安徽大学《机器学习》2022-2023学年第一学期期末试卷_第1页
安徽大学《机器学习》2022-2023学年第一学期期末试卷_第2页
安徽大学《机器学习》2022-2023学年第一学期期末试卷_第3页
安徽大学《机器学习》2022-2023学年第一学期期末试卷_第4页
安徽大学《机器学习》2022-2023学年第一学期期末试卷_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

自觉遵守考场纪律如考试作弊此答卷无效密自觉遵守考场纪律如考试作弊此答卷无效密封线第1页,共3页安徽大学《机器学习》

2022-2023学年第一学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分一、单选题(本大题共20个小题,每小题1分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、假设要预测一个时间序列数据中的突然变化点,以下哪种方法可能是最合适的?()A.滑动窗口分析,通过比较相邻窗口的数据差异来检测变化,但窗口大小选择困难B.基于统计的假设检验,如t检验或方差分析,但对数据分布有要求C.变点检测算法,如CUSUM或Pettitt检验,专门用于检测变化点,但可能对噪声敏感D.深度学习中的异常检测模型,能够自动学习变化模式,但需要大量数据训练2、想象一个图像识别的任务,需要对大量的图片进行分类,例如区分猫和狗的图片。为了达到较好的识别效果,同时考虑计算资源和训练时间的限制。以下哪种方法可能是最合适的?()A.使用传统的机器学习算法,如基于特征工程的支持向量机,需要手动设计特征,但计算量相对较小B.采用浅层的神经网络,如只有一到两个隐藏层的神经网络,训练速度较快,但可能无法捕捉复杂的图像特征C.运用深度卷积神经网络,如ResNet架构,能够自动学习特征,识别效果好,但计算资源需求大,训练时间长D.利用迁移学习,将在大规模图像数据集上预训练好的模型,如Inception模型,微调应用到当前任务,节省训练时间和计算资源3、在进行强化学习中的策略优化时,以下关于策略优化方法的描述,哪一项是不正确的?()A.策略梯度方法通过直接计算策略的梯度来更新策略参数B.信赖域策略优化(TrustRegionPolicyOptimization,TRPO)通过限制策略更新的幅度来保证策略的改进C.近端策略优化(ProximalPolicyOptimization,PPO)是一种基于策略梯度的改进算法,具有更好的稳定性和收敛性D.所有的策略优化方法在任何强化学习任务中都能取得相同的效果,不需要根据任务特点进行选择4、在一个股票价格预测的场景中,需要根据历史的股票价格、成交量、公司财务指标等数据来预测未来的价格走势。数据具有非线性、非平稳和高噪声的特点。以下哪种方法可能是最合适的?()A.传统的线性回归方法,简单直观,但无法处理非线性关系B.支持向量回归(SVR),对非线性数据有一定处理能力,但对高噪声数据可能效果不佳C.随机森林回归,能够处理非线性和高噪声数据,但解释性较差D.基于深度学习的循环神经网络(RNN)或长短时记忆网络(LSTM),对时间序列数据有较好的建模能力,但容易过拟合5、在评估机器学习模型的性能时,通常会使用多种指标。假设我们有一个二分类模型,用于预测患者是否患有某种疾病。以下关于模型评估指标的描述,哪一项是不正确的?()A.准确率是正确分类的样本数占总样本数的比例,但在类别不平衡的情况下可能不准确B.召回率是被正确预测为正例的样本数占实际正例样本数的比例C.F1分数是准确率和召回率的调和平均值,综合考虑了模型的准确性和全面性D.均方误差(MSE)常用于二分类问题的模型评估,值越小表示模型性能越好6、假设正在进行一个异常检测任务,数据具有高维度和复杂的分布。以下哪种技术可以用于将高维数据映射到低维空间以便更好地检测异常?()A.核主成分分析(KPCA)B.局部线性嵌入(LLE)C.拉普拉斯特征映射D.以上技术都可以7、某研究需要对大量的文本数据进行情感分析,判断文本的情感倾向是积极、消极还是中性。以下哪种机器学习方法在处理此类自然语言处理任务时经常被采用?()A.基于规则的方法B.机器学习分类算法C.深度学习情感分析模型D.以上方法都可能有效,取决于数据和任务特点8、假设正在进行一个目标检测任务,例如在图像中检测出人物和车辆。以下哪种深度学习框架在目标检测中被广泛应用?()A.TensorFlowB.PyTorchC.CaffeD.以上框架都常用于目标检测9、在进行数据预处理时,异常值的处理是一个重要环节。假设我们有一个包含员工工资数据的数据集。以下关于异常值处理的方法,哪一项是不正确的?()A.可以通过可视化数据分布,直观地发现异常值B.基于统计学方法,如三倍标准差原则,可以识别出可能的异常值C.直接删除所有的异常值,以保证数据的纯净性D.对异常值进行修正或替换,使其更符合数据的整体分布10、在进行特征工程时,需要对连续型特征进行离散化处理。以下哪种离散化方法在某些情况下可以保留更多的信息,同时减少数据的复杂性?()A.等宽离散化B.等频离散化C.基于聚类的离散化D.基于决策树的离散化11、在构建一个机器学习模型时,如果数据中存在噪声,以下哪种方法可以帮助减少噪声的影响()A.增加正则化项B.减少训练轮数C.增加模型的复杂度D.以上方法都不行12、在一个文本生成任务中,例如生成诗歌或故事,以下哪种方法常用于生成自然语言文本?()A.基于规则的方法B.基于模板的方法C.基于神经网络的方法,如TransformerD.以上都不是13、在一个异常检测的任务中,数据分布呈现多峰且存在离群点。以下哪种异常检测算法可能表现较好?()A.基于密度的局部异常因子(LOF)算法,能够发现局部密度差异较大的异常点,但对参数敏感B.一类支持向量机(One-ClassSVM),适用于高维数据,但对数据分布的假设较强C.基于聚类的异常检测,将远离聚类中心的点视为异常,但聚类效果对结果影响较大D.以上算法结合使用,根据数据特点选择合适的方法或进行组合14、在进行模型评估时,除了准确率、召回率等指标,还可以使用混淆矩阵来更全面地了解模型的性能。假设我们有一个二分类模型的混淆矩阵。以下关于混淆矩阵的描述,哪一项是不准确的?()A.混淆矩阵的行表示真实类别,列表示预测类别B.真阳性(TruePositive,TP)表示实际为正例且被预测为正例的样本数量C.假阴性(FalseNegative,FN)表示实际为正例但被预测为负例的样本数量D.混淆矩阵只能用于二分类问题,不能用于多分类问题15、在一个医疗诊断项目中,我们希望利用机器学习算法来预测患者是否患有某种疾病。收集到的数据集包含患者的各种生理指标、病史等信息。在选择合适的机器学习算法时,需要考虑多个因素,如数据的规模、特征的数量、数据的平衡性等。如果数据量较大,特征维度较高,且存在一定的噪声,以下哪种算法可能是最优选择?()A.逻辑回归算法,简单且易于解释B.决策树算法,能够处理非线性关系C.支持向量机算法,在小样本数据上表现出色D.随机森林算法,对噪声和异常值具有较好的容忍性16、想象一个市场营销的项目,需要根据客户的购买历史、浏览行为和人口统计信息来预测其未来的购买倾向。同时,要能够解释模型的决策依据以指导营销策略的制定。以下哪种模型和策略可能是最适用的?()A.建立逻辑回归模型,通过系数分析解释变量的影响,但对于复杂的非线性关系可能不敏感B.运用决策树集成算法,如梯度提升树(GradientBoostingTree),准确性较高,且可以通过特征重要性评估解释模型,但局部解释性相对较弱C.采用深度学习中的多层卷积神经网络,预测能力强,但几乎无法提供直观的解释D.构建基于规则的分类器,明确的规则易于理解,但可能无法处理复杂的数据模式和不确定性17、某研究团队正在开发一个用于医疗图像诊断的机器学习模型,需要提高模型对小病变的检测能力。以下哪种方法可以尝试?()A.增加数据增强的强度B.使用更复杂的模型架构C.引入注意力机制D.以上方法都可以18、在处理自然语言处理任务时,词嵌入(WordEmbedding)是一种常用的技术。假设我们要对一段文本进行情感分析。以下关于词嵌入的描述,哪一项是错误的?()A.词嵌入将单词表示为低维实数向量,捕捉单词之间的语义关系B.Word2Vec和GloVe是常见的词嵌入模型,可以学习到单词的分布式表示C.词嵌入向量的维度通常是固定的,且不同单词的向量维度必须相同D.词嵌入可以直接用于文本分类任务,无需进行进一步的特征工程19、在分类问题中,如果正负样本比例严重失衡,以下哪种评价指标更合适?()A.准确率B.召回率C.F1值D.均方误差20、在机器学习中,对于一个分类问题,我们需要选择合适的算法来提高预测准确性。假设数据集具有高维度、大量特征且存在非线性关系,同时样本数量相对较少。在这种情况下,以下哪种算法可能是一个较好的选择?()A.逻辑回归B.决策树C.支持向量机D.朴素贝叶斯二、简答题(本大题共5个小题,共25分)1、(本题5分)解释如何在机器学习中进行特征交互建模。2、(本题5分)什么是零样本学习?它的挑战是什么?3、(本题5分)谈谈在地质勘探中,机器学习的应用。4、(本题5分)简述机器学习中的生成对抗网络(GAN)。5、(本题5分)解释Q-learning算法的基本概念。三、应用题(本大题共5个小题,共25分)1、(本题5分)借助动物学数据分析动物的行为和生态。2、(本题5分)通过SVM算法对图像中的瑕疵进行检测。3、(本题5分)借助生物数学模型数据模拟生物过程和预测生物现象。4、(本题5分)使用决策树算法对客户流失进行预测。5、(本题5分)使用决策树算法对用户的消费行为进行分析。四、论述题(本大题共3个小题,共30分)1、(本题10分)分析机器学习

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论