海南省临高县第二中学2025届高三冲刺模拟数学试卷含解析_第1页
海南省临高县第二中学2025届高三冲刺模拟数学试卷含解析_第2页
海南省临高县第二中学2025届高三冲刺模拟数学试卷含解析_第3页
海南省临高县第二中学2025届高三冲刺模拟数学试卷含解析_第4页
海南省临高县第二中学2025届高三冲刺模拟数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

海南省临高县第二中学2025届高三冲刺模拟数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知正方体的棱长为2,点在线段上,且,平面经过点,则正方体被平面截得的截面面积为()A. B. C. D.2.已知函数的图象在点处的切线方程是,则()A.2 B.3 C.-2 D.-33.已知复数满足(其中为的共轭复数),则的值为()A.1 B.2 C. D.4.设复数满足,在复平面内对应的点为,则不可能为()A. B. C. D.5.己知函数若函数的图象上关于原点对称的点有2对,则实数的取值范围是()A. B. C. D.6.若与互为共轭复数,则()A.0 B.3 C.-1 D.47.设、分别是定义在上的奇函数和偶函数,且,则()A. B.0 C.1 D.38.设等差数列的前项和为,若,则()A.23 B.25 C.28 D.299.记为数列的前项和数列对任意的满足.若,则当取最小值时,等于()A.6 B.7 C.8 D.910.双曲线的渐近线方程是()A. B. C. D.11.设函数,的定义域都为,且是奇函数,是偶函数,则下列结论正确的是()A.是偶函数 B.是奇函数C.是奇函数 D.是奇函数12.已知椭圆的左、右焦点分别为、,过点的直线与椭圆交于、两点.若的内切圆与线段在其中点处相切,与相切于点,则椭圆的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,若向量与共线,则________.14.(5分)已知曲线的方程为,其图象经过点,则曲线在点处的切线方程是____________.15.已知,,则与的夹角为.16.已知抛物线的焦点为,斜率为2的直线与的交点为,若,则直线的方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知三棱柱中,与是全等的等边三角形.(1)求证:;(2)若,求二面角的余弦值.18.(12分)某地为改善旅游环境进行景点改造.如图,将两条平行观光道l1和l2通过一段抛物线形状的栈道AB连通(道路不计宽度),l1和l2所在直线的距离为0.5(百米),对岸堤岸线l3平行于观光道且与l2相距1.5(百米)(其中A为抛物线的顶点,抛物线的对称轴垂直于l3,且交l3于M

),在堤岸线l3上的E,F两处建造建筑物,其中E,F到M的距离为1

(百米),且F恰在B的正对岸(即BF⊥l3).(1)在图②中建立适当的平面直角坐标系,并求栈道AB的方程;(2)游客(视为点P)在栈道AB的何处时,观测EF的视角(∠EPF)最大?请在(1)的坐标系中,写出观测点P的坐标.19.(12分)在中,,.已知分别是的中点.将沿折起,使到的位置且二面角的大小是60°,连接,如图:(1)证明:平面平面(2)求平面与平面所成二面角的大小.20.(12分)如图,在三棱柱中,平面平面,侧面为平行四边形,侧面为正方形,,,为的中点.(1)求证:平面;(2)求二面角的大小.21.(12分)如图,在四面体中,.(1)求证:平面平面;(2)若,求四面体的体积.22.(10分)在平面直角坐标系中,已知抛物线的焦点为,准线为,是抛物线上上一点,且点的横坐标为,.(1)求抛物线的方程;(2)过点的直线与抛物线交于、两点,过点且与直线垂直的直线与准线交于点,设的中点为,若、、四点共圆,求直线的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

先根据平面的基本性质确定平面,然后利用面面平行的性质定理,得到截面的形状再求解.【详解】如图所示:确定一个平面,因为平面平面,所以,同理,所以四边形是平行四边形.即正方体被平面截的截面.因为,所以,即所以由余弦定理得:所以所以四边形故选:B【点睛】本题主要考查平面的基本性质,面面平行的性质定理及截面面积的求法,还考查了空间想象和运算求解的能力,属于中档题.2、B【解析】

根据求出再根据也在直线上,求出b的值,即得解.【详解】因为,所以所以,又也在直线上,所以,解得所以.故选:B【点睛】本题主要考查导数的几何意义,意在考查学生对这些知识的理解掌握水平.3、D【解析】

按照复数的运算法则先求出,再写出,进而求出.【详解】,,.故选:D【点睛】本题考查复数的四则运算、共轭复数及复数的模,考查基本运算能力,属于基础题.4、D【解析】

依题意,设,由,得,再一一验证.【详解】设,因为,所以,经验证不满足,故选:D.【点睛】本题主要考查了复数的概念、复数的几何意义,还考查了推理论证能力,属于基础题.5、B【解析】

考虑当时,有两个不同的实数解,令,则有两个不同的零点,利用导数和零点存在定理可得实数的取值范围.【详解】因为的图象上关于原点对称的点有2对,所以时,有两个不同的实数解.令,则在有两个不同的零点.又,当时,,故在上为增函数,在上至多一个零点,舍.当时,若,则,在上为增函数;若,则,在上为减函数;故,因为有两个不同的零点,所以,解得.又当时,且,故在上存在一个零点.又,其中.令,则,当时,,故为减函数,所以即.因为,所以在上也存在一个零点.综上,当时,有两个不同的零点.故选:B.【点睛】本题考查函数的零点,一般地,较为复杂的函数的零点,必须先利用导数研究函数的单调性,再结合零点存在定理说明零点的存在性,本题属于难题.6、C【解析】

计算,由共轭复数的概念解得即可.【详解】,又由共轭复数概念得:,.故选:C【点睛】本题主要考查了复数的运算,共轭复数的概念.7、C【解析】

先根据奇偶性,求出的解析式,令,即可求出。【详解】因为、分别是定义在上的奇函数和偶函数,,用替换,得,化简得,即令,所以,故选C。【点睛】本题主要考查函数性质奇偶性的应用。8、D【解析】

由可求,再求公差,再求解即可.【详解】解:是等差数列,又,公差为,,故选:D【点睛】考查等差数列的有关性质、运算求解能力和推理论证能力,是基础题.9、A【解析】

先令,找出的关系,再令,得到的关系,从而可求出,然后令,可得,得出数列为等差数列,得,可求出取最小值.【详解】解法一:由,所以,由条件可得,对任意的,所以是等差数列,,要使最小,由解得,则.解法二:由赋值法易求得,可知当时,取最小值.故选:A【点睛】此题考查的是由数列的递推式求数列的通项,采用了赋值法,属于中档题.10、C【解析】

根据双曲线的标准方程即可得出该双曲线的渐近线方程.【详解】由题意可知,双曲线的渐近线方程是.故选:C.【点睛】本题考查双曲线的渐近线方程的求法,是基础题,解题时要认真审题,注意双曲线的简单性质的合理运用.11、C【解析】

根据函数奇偶性的性质即可得到结论.【详解】解:是奇函数,是偶函数,,,,故函数是奇函数,故错误,为偶函数,故错误,是奇函数,故正确.为偶函数,故错误,故选:.【点睛】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.12、D【解析】

可设的内切圆的圆心为,设,,可得,由切线的性质:切线长相等推得,解得、,并设,求得的值,推得为等边三角形,由焦距为三角形的高,结合离心率公式可得所求值.【详解】可设的内切圆的圆心为,为切点,且为中点,,设,,则,且有,解得,,设,,设圆切于点,则,,由,解得,,,所以为等边三角形,所以,,解得.因此,该椭圆的离心率为.故选:D.【点睛】本题考查椭圆的定义和性质,注意运用三角形的内心性质和等边三角形的性质,切线的性质,考查化简运算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

计算得到,根据向量平行计算得到答案.【详解】由题意可得,因为与共线,所以有,即,解得.故答案为:.【点睛】本题考查了根据向量平行求参数,意在考查学生的计算能力.14、【解析】

依题意,将点的坐标代入曲线的方程中,解得.由,得,则曲线在点处切线的斜率,所以在点处的切线方程是,即.15、【解析】

根据已知条件,去括号得:,16、【解析】

设直线l的方程为,,联立直线l与抛物线C的方程,得到A,B点横坐标的关系式,代入到中,解出t的值,即可求得直线l的方程【详解】设直线.由题设得,故,由题设可得.

由可得,

则,从而,得,所以l的方程为,故答案为:【点睛】本题主要考查了直线的方程,抛物线的定义,抛物线的简单几何性质,直线与抛物线的位置关系,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】

(1)取BC的中点O,则,由是等边三角形,得,从而得到平面,由此能证明(2)以,,所在直线分别为x,y,z轴建立空间直角坐标系,利用向量法求得二面角的余弦值,得到结果.【详解】(1)取BC的中点O,连接,,由于与是等边三角形,所以有,,且,所以平面,平面,所以.(2)设,是全等的等边三角形,所以,又,由余弦定理可得,在中,有,所以以,,所在直线分别为x,y,z轴建立空间直角坐标系,如图所示,则,,,设平面的一个法向量为,则,令,则,又平面的一个法向量为,所以二面角的余弦值为,即二面角的余弦值为.【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有利用线面垂直证明线性垂直,利用向量法求二面角的余弦值,属于中档题目.18、(1)见解析,,x[0,1];(2)P(,)时,视角∠EPF最大.【解析】

(1)以A为原点,l1为x轴,抛物线的对称轴为y轴建系,设出方程,通过点的坐标可求方程;(2)设出的坐标,表示出,利用基本不等式求解的最大值,从而可得观测点P的坐标.【详解】(1)以A为原点,l1为x轴,抛物线的对称轴为y轴建系由题意知:B(1,0.5),设抛物线方程为代入点B得:p=1,故方程为,x[0,1];(2)设P(,),t[0,],作PQ⊥l3于Q,记∠EPQ=,∠FPQ=,,令,,则:,当且仅当即,即,即时取等号;故P(,)时视角∠EPF最大,答:P(,)时,视角∠EPF最大.【点睛】本题主要考查圆锥曲线的实际应用,理解题意,构建合适的模型是求解的关键,涉及最值问题一般利用基本不等式或者导数来进行求解,侧重考查数学运算的核心素养.19、(1)证明见解析(2)45°【解析】

(1)设的中点为,连接,设的中点为,连接,,从而即为二面角的平面角,,推导出,从而平面,则,即,进而平面,推导四边形为平行四边形,从而,平面,由此即可得证.(2)以B为原点,在平面中过B作BE的垂线为x轴,BE为y轴,BA为z轴建立空间直角坐标系,利用向量法求出平面与平面所成二面角的大小.【详解】(1)∵是的中点,∴.设的中点为,连接.设的中点为,连接,.易证:,,∴即为二面角的平面角.∴,而为的中点.易知,∴为等边三角形,∴.①∵,,,∴平面.而,∴平面,∴,即.②由①②,,∴平面.∵分别为的中点.∴四边形为平行四边形.∴,平面,又平面.∴平面平面.(2)如图,建立空间直角坐标系,设.则,,,,显然平面的法向量,设平面的法向量为,,,∴,∴.,由图形观察可知,平面与平面所成的二面角的平面角为锐角.∴平面与平面所成的二面角大小为45°.【点睛】本题主要考查立体几何中面面垂直的证明以及求解二面角大小,难度一般,通常可采用几何方法和向量方法两种进行求解.20、(1)证明见解析(2)【解析】

(1)连接,交与,连接,由,得出结论;(2)以为原点,,,分别为,,轴建立空间直角坐标系,求出平面的法向量,利用夹角公式求出即可.【详解】(1)连接,交与,连接,在中,,又平面,平面,所以平面;(2)由平面平面,,为平面与平面的交线,故平面,故,又,所以平面,以为原点,,,分别为,,轴建立空间直角坐标系,,,,,,,设平面的法向量为,,,由,得,平面的法向量为,由,故二面角的大小为.【点睛】本小题主要考查线面平行的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.21、(1)证明见解析;(2).【解析】

(1)取中点,连接,根据等腰三角形的性质得到,利用全等三角形证得,由此证得平面,进而证得平面平面.(2)由(1)知平面,即是四面体的面上的高,结合锥体体积公式,求得四面体的体积.【详解】(1)证明:如图,取中点,连接,由则,则,故故,平面.又平面,故平面平面(2)由(1)知平面,即是四面体的面上的高,且.在中,,由勾股定理易知故四面体的体积【点睛】本小题主要考查面面垂直的证明,考查锥体体积

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论