版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届宁波市重点中学高考仿真模拟数学试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,分别为内角,,的对边,,,的面积为,则()A. B.4 C.5 D.2.不等式的解集记为,有下面四个命题:;;;.其中的真命题是()A. B. C. D.3.已知向量,且,则等于()A.4 B.3 C.2 D.14.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有()A.12种 B.18种 C.24种 D.64种5.已知函数的图像向右平移个单位长度后,得到的图像关于轴对称,,当取得最小值时,函数的解析式为()A. B.C. D.6.将函数图象向右平移个单位长度后,得到函数的图象关于直线对称,则函数在上的值域是()A. B. C. D.7.已知双曲线的左、右焦点分别为,,P是双曲线E上的一点,且.若直线与双曲线E的渐近线交于点M,且M为的中点,则双曲线E的渐近线方程为()A. B. C. D.8.盒子中有编号为1,2,3,4,5,6,7的7个相同的球,从中任取3个编号不同的球,则取的3个球的编号的中位数恰好为5的概率是()A. B. C. D.9.若为虚数单位,则复数,则在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知抛物线:()的焦点为,为该抛物线上一点,以为圆心的圆与的准线相切于点,,则抛物线方程为()A. B. C. D.11.记个两两无交集的区间的并集为阶区间如为2阶区间,设函数,则不等式的解集为()A.2阶区间 B.3阶区间 C.4阶区间 D.5阶区间12.已知与之间的一组数据:12343.24.87.5若关于的线性回归方程为,则的值为()A.1.5 B.2.5 C.3.5 D.4.5二、填空题:本题共4小题,每小题5分,共20分。13.若在上单调递减,则的取值范围是_______14.满足约束条件的目标函数的最小值是.15.如图,直三棱柱中,,,,P是的中点,则三棱锥的体积为________.16.如图,已知扇形的半径为1,面积为,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为了解本学期学生参加公益劳动的情况,某校从初高中学生中抽取100名学生,收集了他们参加公益劳动时间(单位:小时)的数据,绘制图表的一部分如表.(1)从男生中随机抽取一人,抽到的男生参加公益劳动时间在的概率:(2)从参加公益劳动时间的学生中抽取3人进行面谈,记为抽到高中的人数,求的分布列;(3)当时,高中生和初中生相比,那学段学生平均参加公益劳动时间较长.(直接写出结果)18.(12分)已知分别是椭圆的左焦点和右焦点,椭圆的离心率为是椭圆上两点,点满足.(1)求的方程;(2)若点在圆上,点为坐标原点,求的取值范围.19.(12分)求函数的最大值.20.(12分)设椭圆的左右焦点分别为,离心率是,动点在椭圆上运动,当轴时,.(1)求椭圆的方程;(2)延长分别交椭圆于点(不重合).设,求的最小值.21.(12分)在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴,建立极坐标系.已知点的直角坐标为,过的直线与曲线相交于,两点.(1)若的斜率为2,求的极坐标方程和曲线的普通方程;(2)求的值.22.(10分)已知,,为正数,且,证明:(1);(2).
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
由正弦定理可知,从而可求出.通过可求出,结合余弦定理即可求出的值.【详解】解:,即,即.,则.,解得.,故选:D.【点睛】本题考查了正弦定理,考查了余弦定理,考查了三角形的面积公式,考查同角三角函数的基本关系.本题的关键是通过正弦定理结合已知条件,得到角的正弦值余弦值.2、A【解析】
作出不等式组表示的可行域,然后对四个选项一一分析可得结果.【详解】作出可行域如图所示,当时,,即的取值范围为,所以为真命题;为真命题;为假命题.故选:A【点睛】此题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于中档题.3、D【解析】
由已知结合向量垂直的坐标表示即可求解.【详解】因为,且,,则.故选:.【点睛】本题主要考查了向量垂直的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题.4、C【解析】
根据题意,分2步进行分析:①,将4人分成3组,②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,将剩下的2组全排列,安排其他的2项工作,由分步计数原理计算可得答案.【详解】解:根据题意,分2步进行分析:①,将4人分成3组,有种分法;②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,有2种情况,将剩下的2组全排列,安排其他的2项工作,有种情况,此时有种情况,则有种不同的安排方法;故选:C.【点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.5、A【解析】
先求出平移后的函数解析式,结合图像的对称性和得到A和.【详解】因为关于轴对称,所以,所以,的最小值是.,则,所以.【点睛】本题主要考查三角函数的图像变换及性质.平移图像时需注意x的系数和平移量之间的关系.6、D【解析】
由题意利用函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,求得结果.【详解】解:把函数图象向右平移个单位长度后,可得的图象;再根据得到函数的图象关于直线对称,,,,函数.在上,,,故,即的值域是,故选:D.【点睛】本题主要考查函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,属于中档题.7、C【解析】
由双曲线定义得,,OM是的中位线,可得,在中,利用余弦定理即可建立关系,从而得到渐近线的斜率.【详解】根据题意,点P一定在左支上.由及,得,,再结合M为的中点,得,又因为OM是的中位线,又,且,从而直线与双曲线的左支只有一个交点.在中.——①由,得.——②由①②,解得,即,则渐近线方程为.故选:C.【点睛】本题考查求双曲线渐近线方程,涉及到双曲线的定义、焦点三角形等知识,是一道中档题.8、B【解析】
由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种,由古典概型的概率公式即得解.【详解】由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种由古典概型,取的3个球的编号的中位数恰好为5的概率为:故选:B【点睛】本题考查了排列组合在古典概型中的应用,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.9、B【解析】
首先根据特殊角的三角函数值将复数化为,求出,再利用复数的几何意义即可求解.【详解】,,则在复平面内对应的点的坐标为,位于第二象限.故选:B【点睛】本题考查了复数的几何意义、共轭复数的概念、特殊角的三角函数值,属于基础题.10、C【解析】
根据抛物线方程求得点的坐标,根据轴、列方程,解方程求得的值.【详解】不妨设在第一象限,由于在抛物线上,所以,由于以为圆心的圆与的准线相切于点,根据抛物线的定义可知,、轴,且.由于,所以直线的倾斜角为,所以,解得,或(由于,故舍去).所以抛物线的方程为.故选:C【点睛】本小题主要考查抛物线的定义,考查直线的斜率,考查数形结合的数学思想方法,属于中档题.11、D【解析】
可判断函数为奇函数,先讨论当且时的导数情况,再画出函数大致图形,将所求区间端点值分别看作对应常函数,再由图形确定具体自变量范围即可求解【详解】当且时,.令得.可得和的变化情况如下表:令,则原不等式变为,由图像知的解集为,再次由图像得到的解集由5段分离的部分组成,所以解集为5阶区间.故选:D【点睛】本题考查由函数的奇偶性,单调性求解对应自变量范围,导数法研究函数增减性,数形结合思想,转化与化归思想,属于难题12、D【解析】
利用表格中的数据,可求解得到代入回归方程,可得,再结合表格数据,即得解.【详解】利用表格中数据,可得又,.解得故选:D【点睛】本题考查了线性回归方程过样本中心点的性质,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由题意可得导数在恒成立,解出即可.【详解】解:由题意,,当时,显然,符合题意;当时,在恒成立,∴,∴,故答案为:.【点睛】本题主要考查利用导数研究函数的单调性,属于中档题.14、-2【解析】
可行域是如图的菱形ABCD,代入计算,知为最小.15、【解析】
证明平面,于是,利用三棱锥的体积公式即可求解.【详解】平面,平面,,又.平面,是的中点,.
故答案为:【点睛】本题考查了线面垂直的判定定理、三棱锥的体积公式,属于基础题.16、【解析】
根据题意,利用扇形面积公式求出圆心角,再根据等腰三角形性质求出,利用向量的数量积公式求出.【详解】设角,则,,所以在等腰三角形中,,则.故答案为:.【点睛】本题考查扇形的面积公式和向量的数量积公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)详见解析(3)初中生平均参加公益劳动时间较长【解析】
(1)由图表直接利用随机事件的概率公式求解;(2)X的所有可能取值为0,1,2,3.由古典概型概率公式求概率,则分布列可求;(3)由图表直接判断结果.【详解】(1)100名学生中共有男生48名,其中共有20人参加公益劳动时间在,设男生中随机抽取一人,抽到的男生参加公益劳动时间在的事件为,那么;(2)的所有可能取值为0,1,2,3.∴;;;.∴随机变量的分布列为:(3)由图表可知,初中生平均参加公益劳动时间较长.【点睛】本小题主要考查古典概型的计算,考查超几何分布的分布列的计算,属于基础题.18、(1);(2).【解析】
(1)根据焦点坐标和离心率,结合椭圆中的关系,即可求得的值,进而得椭圆的标准方程.(2)设出直线的方程为,由题意可知为中点.联立直线与椭圆方程,由韦达定理表示出,由判别式可得;由平面向量的线性运算及数量积定义,化简可得,代入弦长公式化简;由中点坐标公式可得点的坐标,代入圆的方程,化简可得,代入数量积公式并化简,由换元法令,代入可得,再令及,结合函数单调性即可确定的取值范围,即确定的取值范围,因而可得的取值范围.【详解】(1)分别是椭圆的左焦点和右焦点,则,椭圆的离心率为则解得,所以,所以的方程为.(2)设直线的方程为,点满足,则为中点,点在圆上,设,联立直线与椭圆方程,化简可得,所以则,化简可得,而由弦长公式代入可得为中点,则点在圆上,代入化简可得,所以令,则,,令,则令,则,所以,因为在内单调递增,所以,即所以【点睛】本题考查了椭圆的标准方程求法,直线与椭圆的位置关系综合应用,由韦达定理研究参数间的关系,平面向量的线性运算与数量积运算,弦长公式的应用及换元法在求取值范围问题中的综合应用,计算量大,属于难题.19、【解析】
试题分析:由柯西不等式得试题解析:因为,所以.等号当且仅当,即时成立.所以的最大值为.考点:柯西不等式求最值20、(1);(2)【解析】
(1)根据题意直接计算得到,,得到椭圆方程.(2)不妨设,且,设,代入数据化简得到,故,得到答案.【详解】(1),所以,,化简得,所以,,所以方程为;(2)由题意得,不在轴上,不妨设,且,设,所以由,得,所以,由,得,代入,化简得:,由于,所以,同理可得,所以,所以当时,最小为【点睛】本题考查了椭圆方程,椭圆中的向量运算和最值,意在考查学生的计算能力和综合应用能力.21、(1):,:;(2)【解析】
(1)根据点斜式写出直线的直角坐标方程,并转化为极坐标方程,利用,将曲线的参数方程转化为普通方程.(2)将直线的参数方程代入曲线的普通方程,结合直线参数的几何意义以及根与系数关系,求得的值.【详解】(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年住宅购买协议9篇
- 2024振宁星光广场商铺租赁合同书合同商铺商户南宁振宁开发有限责任公司
- 2024年合作伙伴招商合同3篇
- 2024年个人云空间租赁合同3篇
- 2024年单边导向陶瓷弹片项目建议书
- 2024棉花买卖合同 标准版模板全
- 2024采购合同电子版本
- 2024天然气购销合同标准文本
- 电子存储服务行业发展预测分析
- 2024淋浴隔断采购合同
- 2024-2025学年人教版七年级上册数学期末专项复习:期末必刷压轴60题(原卷版)
- 2023年合肥东方英才人才有限公司招聘笔试真题
- 2023年贵州贵州习酒股份有限公司招聘笔试真题
- 临期食品安全管理制度
- 护理安全警示教育-新-
- 做自己的中医
- 酒店房屋租赁合同范本(31篇)
- 北京师大附属实验中学2025届高二数学第一学期期末学业水平测试试题含解析
- 浙江省文化产业投资集团招聘笔试题库2024
- 环境感官线索对饮食决策的影响及其机制
- 写作《记述与动物的相处》同步课件 2024-2025学年七年级语文上册(统编版2024)
评论
0/150
提交评论