山东、湖北省部分重点中学2025届高三下学期一模考试数学试题含解析_第1页
山东、湖北省部分重点中学2025届高三下学期一模考试数学试题含解析_第2页
山东、湖北省部分重点中学2025届高三下学期一模考试数学试题含解析_第3页
山东、湖北省部分重点中学2025届高三下学期一模考试数学试题含解析_第4页
山东、湖北省部分重点中学2025届高三下学期一模考试数学试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东、湖北省部分重点中学2025届高三下学期一模考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,圆的半径为,,是圆上的定点,,是圆上的动点,点关于直线的对称点为,角的始边为射线,终边为射线,将表示为的函数,则在上的图像大致为()A. B. C. D.2.函数的一个单调递增区间是()A. B. C. D.3.执行如图所示的程序框图,则输出的()A.2 B.3 C. D.4.若x,y满足约束条件则z=的取值范围为()A.[] B.[,3] C.[,2] D.[,2]5.集合的子集的个数是()A.2 B.3 C.4 D.86.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”.如图就是一重卦.在所有重卦中随机取一重卦,则该重卦至少有2个阳爻的概率是()A. B. C. D.7.已知集合,,则A. B.C. D.8.一物体作变速直线运动,其曲线如图所示,则该物体在间的运动路程为()m.A.1 B. C. D.29.已知向量,夹角为,,,则()A.2 B.4 C. D.10.已知为两条不重合直线,为两个不重合平面,下列条件中,的充分条件是()A.∥ B.∥C.∥∥ D.11.“中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有这样一个相关的问题:将1到2020这2020个自然数中被5除余3且被7除余2的数按照从小到大的顺序排成一列,构成一个数列,则该数列各项之和为()A.56383 B.57171 C.59189 D.6124212.已知数列对任意的有成立,若,则等于()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点M是曲线y=2lnx+x2﹣3x上一动点,当曲线在M处的切线斜率取得最小值时,该切线的方程为_______.14.在△ABC中,a=3,,B=2A,则cosA=_____.15.函数在区间(-∞,1)上递增,则实数a的取值范围是____16.在的展开式中,的系数等于__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在数列和等比数列中,,,.(1)求数列及的通项公式;(2)若,求数列的前n项和.18.(12分)已知抛物线:,点为抛物线的焦点,焦点到直线的距离为,焦点到抛物线的准线的距离为,且.(1)求抛物线的标准方程;(2)若轴上存在点,过点的直线与抛物线相交于、两点,且为定值,求点的坐标.19.(12分)已知椭圆过点,设椭圆的上顶点为,右顶点和右焦点分别为,,且.(1)求椭圆的标准方程;(2)设直线交椭圆于,两点,设直线与直线的斜率分别为,,若,试判断直线是否过定点?若过定点,求出该定点的坐标;若不过定点,请说明理由.20.(12分)如图,在三棱锥中,平面平面,,.点,,分别为线段,,的中点,点是线段的中点.(1)求证:平面.(2)判断与平面的位置关系,并证明.21.(12分)为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援,现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.(1)求出易倒伏玉米茎高的中位数;(2)根据茎叶图的数据,完成下面的列联表:抗倒伏易倒伏矮茎高茎(3)根据(2)中的列联表,是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?附:,0.0500.0100.0013.8416.63510.82822.(10分)在锐角中,分别是角的对边,,,且.(1)求角的大小;(2)求函数的值域.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

根据图象分析变化过程中在关键位置及部分区域,即可排除错误选项,得到函数图象,即可求解.【详解】由题意,当时,P与A重合,则与B重合,所以,故排除C,D选项;当时,,由图象可知选B.故选:B【点睛】本题主要考查三角函数的图像与性质,正确表示函数的表达式是解题的关键,属于中档题.2、D【解析】

利用同角三角函数的基本关系式、二倍角公式和辅助角公式化简表达式,再根据三角函数单调区间的求法,求得的单调区间,由此确定正确选项.【详解】因为,由单调递增,则(),解得(),当时,D选项正确.C选项是递减区间,A,B选项中有部分增区间部分减区间.故选:D【点睛】本小题考查三角函数的恒等变换,三角函数的图象与性质等基础知识;考查运算求解能力,推理论证能力,数形结合思想,应用意识.3、B【解析】

运行程序,依次进行循环,结合判断框,可得输出值.【详解】起始阶段有,,第一次循环后,,第二次循环后,,第三次循环后,,第四次循环后,,所有后面的循环具有周期性,周期为3,当时,再次循环输出的,,此时,循环结束,输出,故选:B【点睛】本题主要考查程序框图的相关知识,经过几次循环找出规律是关键,属于基础题型.4、D【解析】

由题意作出可行域,转化目标函数为连接点和可行域内的点的直线斜率的倒数,数形结合即可得解.【详解】由题意作出可行域,如图,目标函数可表示连接点和可行域内的点的直线斜率的倒数,由图可知,直线的斜率最小,直线的斜率最大,由可得,由可得,所以,,所以.故选:D.【点睛】本题考查了非线性规划的应用,属于基础题.5、D【解析】

先确定集合中元素的个数,再得子集个数.【详解】由题意,有三个元素,其子集有8个.故选:D.【点睛】本题考查子集的个数问题,含有个元素的集合其子集有个,其中真子集有个.6、C【解析】

利用组合的方法求所求的事件的对立事件,即该重卦没有阳爻或只有1个阳爻的概率,再根据两对立事件的概率和为1求解即可.【详解】设“该重卦至少有2个阳爻”为事件.所有“重卦”共有种;“该重卦至少有2个阳爻”的对立事件是“该重卦没有阳爻或只有1个阳爻”,其中,没有阳爻(即6个全部是阴爻)的情况有1种,只有1个阳爻的情况有种,故,所以该重卦至少有2个阳爻的概率是.故选:C【点睛】本题主要考查了对立事件概率和为1的方法求解事件概率的方法.属于基础题.7、D【解析】

因为,,所以,,故选D.8、C【解析】

由图像用分段函数表示,该物体在间的运动路程可用定积分表示,计算即得解【详解】由题中图像可得,由变速直线运动的路程公式,可得.所以物体在间的运动路程是.故选:C【点睛】本题考查了定积分的实际应用,考查了学生转化划归,数形结合,数学运算的能力,属于中档题.9、A【解析】

根据模长计算公式和数量积运算,即可容易求得结果.【详解】由于,故选:A.【点睛】本题考查向量的数量积运算,模长的求解,属综合基础题.10、D【解析】

根据面面垂直的判定定理,对选项中的命题进行分析、判断正误即可.【详解】对于A,当,,时,则平面与平面可能相交,,,故不能作为的充分条件,故A错误;对于B,当,,时,则,故不能作为的充分条件,故B错误;对于C,当,,时,则平面与平面相交,,,故不能作为的充分条件,故C错误;对于D,当,,,则一定能得到,故D正确.故选:D.【点睛】本题考查了面面垂直的判断问题,属于基础题.11、C【解析】

根据“被5除余3且被7除余2的正整数”,可得这些数构成等差数列,然后根据等差数列的前项和公式,可得结果.【详解】被5除余3且被7除余2的正整数构成首项为23,公差为的等差数列,记数列则令,解得.故该数列各项之和为.故选:C.【点睛】本题考查等差数列的应用,属基础题。12、B【解析】

观察已知条件,对进行化简,运用累加法和裂项法求出结果.【详解】已知,则,所以有,,,,两边同时相加得,又因为,所以.故选:【点睛】本题考查了求数列某一项的值,运用了累加法和裂项法,遇到形如时就可以采用裂项法进行求和,需要掌握数列中的方法,并能熟练运用对应方法求解.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

先求导数可得切线斜率,利用基本不等式可得切点横坐标,从而可得切线方程.【详解】,,=1时有最小值1,此时M(1,﹣2),故切线方程为:,即.故答案为:.【点睛】本题主要考查导数的几何意义,切点处的导数值等于切线的斜率是求解的关键,侧重考查数学运算的核心素养.14、【解析】

由已知利用正弦定理,二倍角的正弦函数公式即可计算求值得解.【详解】解:∵a=3,,B=2A,∴由正弦定理可得:,∴cosA.故答案为.【点睛】本题主要考查了正弦定理,二倍角的正弦函数公式在解三角形中的应用,属于基础题.15、【解析】

根据复合函数单调性同增异减,结合二次函数的性质、对数型函数的定义域列不等式组,解不等式求得的取值范围.【详解】由二次函数的性质和复合函数的单调性可得解得.故答案为:【点睛】本小题主要考查根据对数型复合函数的单调性求参数的取值范围,属于基础题.16、7【解析】

由题,得,令,即可得到本题答案.【详解】由题,得,令,得x的系数.故答案为:7【点睛】本题主要考查二项式定理的应用,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】

(1)根据与可求得,再根据等比数列的基本量求解即可.(2)由(1)可得,再利用错位相减求和即可.【详解】解:(1)依题意,,设数列的公比为q,由,可知,由,得,又,则,故,又由,得.(2)依题意.,①则,②①-②得,即,故.【点睛】本题主要考查了等比数列的基本量求解以及错位相减求和等.属于中档题.18、(1)(2)【解析】

(1)先分别表示出,然后根据求解出的值,则的标准方程可求;(2)设出直线的方程并联立抛物线方程得到韦达定理形式,然后根据距离公式表示出并代入韦达定理形式,由此判断出为定值时的坐标.【详解】(1)由题意可得,焦点,,则,,∴解得.抛物线的标准方程为(2)设,设点,,显然直线的斜率不为0.设直线的方程为联立方程,整理可得,,∴,∴要使为定值,必有,解得,∴为定值时,点的坐标为【点睛】本题考查抛物线方程的求解以及抛物线中的定值问题,难度一般.(1)处理直线与抛物线相交对应的定值问题,联立直线方程借助韦达定理形式是常用方法;(2)直线与圆锥曲线的问题中,直线方程的设法有时能很大程度上起到简化运算的作用。19、(1)(2)直线过定点,该定点的坐标为.【解析】

(1)因为椭圆过点,所以①,设为坐标原点,因为,所以,又,所以②,将①②联立解得(负值舍去),所以椭圆的标准方程为.(2)由(1)可知,设,.将代入,消去可得,则,,,所以,所以,此时,所以,此时直线的方程为,即,令,可得,所以直线过定点,该定点的坐标为.20、(1)见解析(2)平面.见解析【解析】

(1)要证平面,只需证明,,即可求得答案;(2)连接交于点,连接,根据已知条件求证,即可判断与平面的位置关系,进而求得答案.【详解】(1),为边的中点,,平面平面,平面平面,平面,平面,,在内,,为所在边的中点,,又,,平面.(2)判断可知,平面,证明如下:连接交于点,连接.、、分别为边、、的中点,.又是的重心,,,平面,平面,平面.【点睛】本题主要考查了求证线面垂直和线面平行,解题关键是掌握线面垂直判定定理和线面平行判断定理,考查了分析能力和空间想象能力,属于中档题.21、(1)190(2)见解析(3)可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关.【解析】

(1)排序后第10和第11两个数的平均数为中位数;(2)由茎叶图可得列联表;(3)由列联表计算可得结论.【详解】解:(1).(2)抗倒伏易倒伏矮茎154高茎1016(3)由于,因此可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关.【点睛】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论