中国计量大学《品牌形象设计》2021-2022学年第一学期期末试卷_第1页
中国计量大学《品牌形象设计》2021-2022学年第一学期期末试卷_第2页
中国计量大学《品牌形象设计》2021-2022学年第一学期期末试卷_第3页
中国计量大学《品牌形象设计》2021-2022学年第一学期期末试卷_第4页
中国计量大学《品牌形象设计》2021-2022学年第一学期期末试卷_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

自觉遵守考场纪律如考试作弊此答卷无效密自觉遵守考场纪律如考试作弊此答卷无效密封线第1页,共3页中国计量大学

《品牌形象设计》2021-2022学年第一学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分一、单选题(本大题共20个小题,每小题1分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、计算机视觉中的手势识别用于理解人的手势动作。假设要在一个智能交互系统中实现实时准确的手势识别,以下关于手势识别方法的描述,正确的是:()A.基于传感器的手势识别方法能够精确获取手势的运动信息,但佩戴传感器不方便B.基于视觉的手势识别方法不受环境光照和背景的影响,识别稳定性高C.深度学习中的卷积神经网络在手势识别中无法处理复杂的手势变化和遮挡D.手势识别系统只要能够识别常见的几种手势,就能够满足大多数应用需求2、计算机视觉在安防监控领域有广泛应用。假设要通过监控摄像头实时检测人群中的异常行为,以下哪种方法可能需要大量的标注数据进行训练?()A.基于规则的方法B.基于深度学习的方法C.基于背景减除的方法D.基于帧差法的方法3、在计算机视觉的图像去噪任务中,去除图像中的噪声。假设要对一张受到严重噪声污染的图像进行去噪处理,以下关于图像去噪方法的描述,正确的是:()A.均值滤波方法能够在去除噪声的同时很好地保留图像的细节B.中值滤波对椒盐噪声的去除效果不佳C.基于深度学习的图像去噪方法可以自适应地学习噪声模式和图像特征D.图像去噪不会引入任何新的失真或模糊4、计算机视觉中的目标计数是估计图像或视频中目标的数量。假设要在一张人群图像中准确计数人数,以下关于目标计数方法的描述,正确的是:()A.基于检测的计数方法通过检测每个个体来实现计数,对密集场景效果好B.基于回归的计数方法直接预测目标数量,计算速度快但精度较低C.深度学习中的注意力机制在目标计数中没有作用,不能提高计数准确性D.目标计数只需要考虑目标的外观特征,不需要考虑图像的上下文信息5、计算机视觉中的行人重识别是在不同摄像头拍摄的图像或视频中识别出特定的行人。以下关于行人重识别的叙述,不正确的是()A.行人重识别需要提取具有判别性的行人特征,克服视角、光照和姿态的变化B.深度学习方法在行人重识别任务中取得了显著的性能提升C.行人重识别在智能安防、视频监控和人员追踪等领域有重要的应用D.行人重识别技术已经能够在大规模数据集上达到100%的准确率6、在计算机视觉的姿态估计任务中,需要确定物体在三维空间中的方向和位置。假设我们要估计一个机器人手臂的姿态,以下哪种技术通常被用于获取准确的姿态信息?()A.基于视觉标记的姿态估计B.基于深度学习的姿态估计C.基于几何约束的姿态估计D.基于惯性测量单元(IMU)的姿态估计7、计算机视觉中的动作识别是对视频中的人体动作进行分类和理解。假设我们要分析一段体育比赛的视频,识别其中运动员的各种动作,以下哪种方法能够有效地捕捉动作的时空特征?()A.基于手工特征和分类器的方法B.基于深度学习的时空卷积网络C.基于光流和轨迹的方法D.基于隐马尔可夫模型的方法8、计算机视觉在虚拟现实(VR)和增强现实(AR)中有重要作用。假设要在VR环境中实现真实感的物体交互,以下哪种技术可能对准确感知物体的位置和姿态至关重要?()A.立体视觉B.光场成像C.结构光D.运动捕捉9、在一个基于计算机视觉的工业质量检测系统中,需要检测产品表面的微小缺陷,如划痕、凹坑等。由于缺陷的尺寸较小且形态多样,以下哪种图像处理算法可能对缺陷检测最为有效?()A.边缘检测算法B.形态学操作C.阈值分割算法D.霍夫变换10、在计算机视觉的立体视觉任务中,通过两个或多个相机获取的图像来计算深度信息。以下哪种立体匹配算法在精度和效率方面可能表现较好?()A.基于区域的匹配算法B.基于特征的匹配算法C.基于深度学习的匹配算法D.以上都是11、计算机视觉中的图像超分辨率技术用于提高图像的分辨率。假设要将一张低分辨率的图像恢复成高分辨率图像,以下关于图像超分辨率方法的描述,正确的是:()A.基于插值的图像超分辨率方法能够生成清晰逼真的高分辨率图像B.深度学习中的生成对抗网络(GAN)在图像超分辨率任务中无法发挥作用C.图像超分辨率的效果不受原始低分辨率图像的质量和内容的限制D.结合先验知识和深度学习的方法可以改善图像超分辨率的效果12、在计算机视觉的场景理解任务中,需要对图像中的物体、关系和上下文进行综合分析。假设要理解一个室内场景的布局和功能,以下哪种信息可能是最关键的?()A.物体的形状和颜色B.物体之间的空间位置关系C.图像的亮度和对比度D.图像的拍摄角度13、在一个基于计算机视觉的机器人导航系统中,需要根据环境图像来规划机器人的路径。以下哪种视觉导航方法可能更适合复杂动态环境?()A.基于地图的导航B.基于视觉里程计的导航C.基于深度学习的端到端导航D.以上都是14、在计算机视觉的人脸识别任务中,假设要实现一个能够在不同光照和表情下准确识别的系统。以下关于数据预处理的步骤,哪一项是最重要的?()A.对人脸图像进行归一化处理,统一大小和亮度B.对图像进行锐化处理,增强面部特征C.给图像添加艺术效果,提高美观度D.随机裁剪图像,增加数据多样性15、当处理低光照条件下拍摄的图像时,为了增强图像的亮度和对比度,同时减少噪声,以下哪种图像处理方法可能更合适?()A.直方图均衡化B.伽马校正C.简单地增加图像的整体亮度值D.不进行任何处理,保留低光照效果16、在计算机视觉中,目标检测是一项重要任务。假设要在一张包含多种物体的图像中准确检测出汽车的位置和类别。以下关于目标检测算法的描述,正确的是:()A.传统的基于特征提取和分类器的方法在复杂场景下检测效果优于深度学习方法B.深度学习中的FasterR-CNN算法通过生成候选区域和分类回归,能够实现高精度的目标检测C.目标检测算法只关注物体的外观特征,不考虑物体之间的空间关系D.所有的目标检测算法对于小目标的检测都具有同样出色的性能17、计算机视觉中的图像分割任务旨在将图像分割成不同的区域。假设要对一张风景图片进行分割,区分天空、陆地和水面。以下关于图像分割方法的描述,哪一项是错误的?()A.基于阈值的分割方法简单快速,但对于复杂图像效果不佳B.区域生长法从种子点开始,逐步合并相似的区域C.深度学习中的全卷积网络(FCN)在图像分割中表现出色,能够生成精确的分割结果D.图像分割的结果总是清晰明确,不存在模糊或错误的边界18、图像去模糊是计算机视觉中的一个难题。假设一张图像由于相机抖动而产生模糊,以下哪种去模糊方法可能需要对模糊核有较为准确的估计?()A.基于深度学习的去模糊方法B.盲去卷积方法C.维纳滤波去模糊方法D.均值滤波去模糊方法19、在计算机视觉中,图像分类是一项基础任务。假设我们有一组包含各种动物的图像数据集,需要训练一个模型来准确区分不同的动物类别。在选择图像分类模型时,以下哪种模型架构通常在处理大规模图像数据集时表现出色?()A.传统的机器学习算法,如支持向量机(SVM)B.浅层的卷积神经网络(CNN)C.深度卷积神经网络,如ResNetD.循环神经网络(RNN)20、计算机视觉中的表情识别用于分析人脸的表情状态。假设要在一个在线教育平台中检测学生的学习状态。以下关于表情识别的描述,哪一项是不正确的?()A.可以通过提取面部肌肉的运动特征来判断表情B.深度学习中的卷积神经网络能够自动学习表情的特征表示C.表情识别能够准确区分细微的表情变化,如困惑和专注D.表情识别不受面部遮挡和光照变化的影响,始终能够准确判断二、简答题(本大题共5个小题,共25分)1、(本题5分)计算机视觉中如何协助地震救援和灾害评估?2、(本题5分)简述图像的傅里叶变换的用途。3、(本题5分)简述计算机视觉在电商中的商品推荐和图像搜索。4、(本题5分)计算机视觉中如何进行车辆类型识别?5、(本题5分)说明计算机视觉在人体姿态估计中的应用。三、分析题(本大题共5个小题,共25分)1、(本题5分)以某艺术展览的海报设计为例,分析其艺术风格、色彩搭配、文字信息如何传达展览的主题和特色。2、(本题5分)分析宝马汽车的广告设计,从车型展示、品牌标志到广告文案。讨论其如何通过视觉传达展现高端品质和驾驶乐趣。3、(本题5分)研究某电子产品品牌的用户反馈调查报告设计,剖析其如何通过图表和文字排版,清晰呈现用户意见和改进方向。4、(本题5分)分析某咖啡店的积分卡设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论