版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精课堂探究探究一导数公式与导数运算法则的简单应用1.应用导数的定义求导,是求导数的基本方法,但运算较烦琐,而利用导数公式求导数,可以简化求导过程,降低运算难度,是常用的求导方法.2.利用导数公式求导,应根据所给问题的特征,恰当地选择求导公式.有时还要先对函数解析式进行化简整理,这样能够简化运算过程.【典型例题1】求下列函数的导数:(1)y=xeq\r(x);(2)y=x4-eq\f(2,x);(3)y=sinx+3x;(4)y=cosx·lnx;(5)y=(x-1)(x-2)(x-3);(6)y=eq\f(x-3,x+2).思路分析:分析每个函数的结构特点,紧扣求导运算法则和基本初等函数的导数公式求导,必要时应对函数解析式进行恒等变形.解:(1)y′=(xeq\r(x))′=()′=eq\f(3,2)·=eq\f(3,2)eq\r(x);(2)y′=eq\b\lc\(\rc\)(\a\vs4\al\co1(x4-\f(2,x)))′=4x3+eq\f(2,x2);(3)y′=(sinx+3x)′=cosx+3xln3;(4)y′=(cosx·lnx)′=-sinx·lnx+cosx·eq\f(1,x)=eq\f(cosx,x)-sinx·lnx;(5)方法1:y′=[(x-1)(x-2)(x-3)]′=[(x-1)(x-2)]′(x-3)+(x-1)(x-2)(x-3)′=[(x-1)′(x-2)+(x-1)(x-2)′](x-3)+(x-1)(x-2)=(x-2+x-1)(x-3)+(x-1)(x-2)=3x2-12x+11。方法2:由于(x-1)(x-2)(x-3)=(x2-3x+2)(x-3)=x3-6x2+11x-6,所以y′=[(x-1)(x-2)(x-3)]′=(x3-6x2+11x-6)′=3x2-12x+11。(6)方法1:y′=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x-3,x+2)))′=eq\f(x-3′x+2-x-3x+2′,x+22)=eq\f(x+2-x-3,x+22)=eq\f(5,x+22);方法2:由于y=eq\f(x-3,x+2)=1-eq\f(5,x+2),于是y′=eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(5,x+2)))′=-eq\f(-5x+2′,x+22)=eq\f(5,x+22).探究二利用导数公式和运算法则求复杂函,数的导数1.对于函数求导问题,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,必须注意变换的等价性,避免不必要的运算错误.2.若要求导的函数解析式与三角函数有关,往往需要先运用相关的三角函数公式对解析式进行化简与整理,然后再套用公式求导.【典型例题2】求下列函数的导数:(1)y=eq\f(\r(x5)+\r(x7)+\r(x9),\r(x));(2)y=eq\b\lc\(\rc\)(\a\vs4\al\co1(sin\f(x,4)))4+eq\b\lc\(\rc\)(\a\vs4\al\co1(cos\f(x,4)))4;(3)y=eq\f(cos2x,sinx+cosx);(4)y=xlneq\r(x)。思路分析:对于较为复杂,不宜直接套用导数公式和导数运算法则的函数,可先对函数进行适当的变形与化简,然后,再运用相关的公式和法则求导.解:(1)y=eq\f(\r(x5)+\r(x7)+\r(x9),\r(x))=x2+x3+x4,∴y′=4x3+3x2+2x.(2)y=eq\b\lc\(\rc\)(\a\vs4\al\co1(sin2\f(x,4)+cos2\f(x,4)))2-2sin2eq\f(x,4)cos2eq\f(x,4)=1-eq\f(1,2)sin2eq\f(x,2)=1-eq\f(1,2)·eq\f(1-cosx,2)=eq\f(3,4)+eq\f(1,4)cosx,∴y′=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)+\f(1,4)cosx))′=-eq\f(1,4)sinx。(3)y=eq\f(cos2x,sinx+cosx)=eq\f(cos2x-sin2x,sinx+cosx)=cosx-sinx,∴y′=(cosx-sinx)′=-sinx-cosx.(4)y=xlneq\r(x)=eq\f(1,2)xlnx,∴y′=eq\f(1,2)(x)′·lnx+eq\f(1,2)x·(lnx)′=eq\f(1,2)lnx+eq\f(1,2)。探究三复合函数的求导1.复合函数的求导法则如下:复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为yx′=yu′·ux′(其中yx′表示y对x的导数).即y对x的导数等于y对u的导数与u对x的导数的乘积.2.复合函数的求导应注意以下几点:(1)分清复合函数是由哪些基本函数复合而成的,适当选定中间变量.(2)分步计算的每一步都要明确是对哪个变量进行求导的,而其中要特别注意的是中间变量的导数.(3)根据基本初等函数的导数公式及导数的运算法则,求出各函数的导数,并把中间变量转换成自变量的函数.(4)复合函数的求导过程熟练后,中间步骤可以省略不写.【典型例题3】求下列函数的导数:(1)y=(3x-1)2;(2)y=ln(5x+2);(3)y=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))2x+1;(4)y=sineq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(π,3)));(5)y=cos2x.思路分析:抓住构成复合函数的基本初等函数是求复合函数导数的关键,解题时可先把复合函数分拆成基本初等函数,再运用复合函数求导法则.解:(1)设y=u2,u=3x-1。则y′=y′u·u′x=2u·3=6(3x-1)=18x-6;(2)设y=lnu,u=5x+2,则y′=y′u·u′x=eq\f(1,u)·5=eq\f(5,5x+2);(3)设y=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))u,u=2x+1。则y′=y′u·u′x=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))ulneq\f(1,2)·2=-eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))2x·ln2;(4)设y=sinu,u=2x-eq\f(π,3),则y′=y′u·u′x=cosu·2=2coseq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(π,3)));(5)y=cos2x=eq\f(cos2x+1,2),设y=eq\f(1,2)cosu+eq\f(1,2),u=2x,则y′=y′u·u′x=-eq\f(1,2)sinu·2=-sin2x。探究四导数运算的综合问题从导数运算的特点及规律出发,可以将导数运算与其他数学问题有机地联系起来,从而获得问题的简单、巧妙的解法.【典型例题4】用导数的方法求和:1+2x+3x2+4x3+…+2014x2013(x≠0,x≠1).思路分析:从幂函数的求导法则入手,结合所求和式的特点求解.解:设f(x)=1+2x+3x2+…+2014x2013,g(x)=x+x2+x3+…+x2014,则f(x)=g′(x).而由等式数列求和公式可得g(x)=eq\f(x1-x2014,1-x)=eq\f(x-x2015,1-x),于是f(x)=eq\b\lc\(\rc\
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025专业仓储合同
- 2025国英置业合同成本手册
- 2025年度农村私人鱼塘承包与绿色渔业发展合作合同
- 二零二五年度农产品品牌营销委托收购合作协议3篇
- 二零二五年度车辆未过户期间的车辆事故免责条款合同3篇
- 二零二五年度火锅店转让及底料供应协议3篇
- 二零二五年度执业药师药品市场营销推广服务合同3篇
- 2025年度特种水产品养殖项目合伙经营合同3篇
- 二零二五年度特色小镇建设住房合作协议3篇
- 2025年度家庭农场规模化养猪场整体转让合同3篇
- 【9道期末】安徽省合肥市庐阳区2023-2024学年九年级上学期期末道德与法治试题
- 腹腔镜全胃切除手术配合
- 2024-2030年中国非物质文化遗产市场前景调研及投资风险分析报告
- 酒店员工人事制度培训
- 2023年山西省公务员录用考试《行测》真题及答案解析
- 医美整形退款协议书范本下载
- 国培培训成果汇报
- 北师大版(三起)(2024)三年级上册英语全册教案(按课设计共23课)
- 博物馆多功能厅功能改造方案
- 外墙真石漆施工后期维护方案
- 工会上墙制度
评论
0/150
提交评论