312函数的表示法课件高一上学期数学人教A版3_第1页
312函数的表示法课件高一上学期数学人教A版3_第2页
312函数的表示法课件高一上学期数学人教A版3_第3页
312函数的表示法课件高一上学期数学人教A版3_第4页
312函数的表示法课件高一上学期数学人教A版3_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.1函数的概念及其表示第三章3.1.2函数的表示法1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.2.理解函数图象的作用.3.了解简单的分段函数,并能简单应用.核心素养:直观想象、数学建模学习目标情境导学函数的表示法在初中我们已经接触过函数的三种表示法:解析法、列表法和图象法.【1】解析法,就是用数学表达式表示两个变量之间的对应关系,如y=2x+3.【2】列表法,就是列出表格表示两个变量之间的对应关系.【3】图象法,就是画出函数图象来表示两个变量之间的对应关系.用什么方法来表示函数呢?用列表法,不用计算,看表就知道函数值用解析法,便于研究函数性质用图象法,容易表示出函数的变化情况函数的表示法【例题】某种笔记本的单价是5元,买m(m∈{1,2,3,4,5})个笔记本需要y元.试用函数的三种表示法来表示函数y=f(m).【解析法】y=5m,m∈{1,2,3,4,5}【列表法】函数可以表示如下表:笔记本数m12345钱数y510152025【图象法】函数图象可以表示如图:252015105012345my【1】解析法必须标明函数的定义域函数的表示法在用三种方法表示函数时要注意:【2】列表法必须罗列出所有的自变量与函数值之间的对应关系【3】图象法必须搞清楚函数图象是“点”还是“线”

并不是所有函数都能用解析法表示,如某地一年中每天的最高气温是日期的函数,该函数就不能用解析法表示;也不是所有函数都可以用列表法表示,如函数f(x)=x.分段函数【题】画出函数y=|x|的图象【解】由绝对值的概念,有y=-x,x<0,x,x≥0.画出图象如图:

像这样的函数,叫做分段函数.分段函数一般在实际问题中出现的比较多,例如出租车的计费,个人所得税的计算等等.在自变量的不同取值区间,有不同对应关系的函数叫做分段函数.(1)分段函数是一个函数,而不是几个函数,处理分段函数的问题时,首先要明确自变量的取值在哪个区间,从而选取相应的对应关系.(2)分段函数在书写的时候左边用大括号把几个对应关系括在一起,在每段对应关系表达式的后面用小括号写上相应的取值范围.(3)分段函数的定义域是所有自变量取值区间的并集,只能写成一个集合的形式;值域是各段函数在对应自变量取值范围内值域的并集.分段函数分段函数几种常见的分段函数:(1)符号函数:

(2)含绝对值符号的函数:

(3)自定义函数:

(3)取整函数:

如图,把直截面半径为25的圆柱形木头锯成直截面为矩形的木料,如果矩形的一边长为t,面积为W,把W表示成t的函数.【解】因为圆的直径是25×2=50,矩形的一边长是t,25t所以与它相邻的另一边长就是

矩形的面积

又因为矩形的边长小于圆的直径,所以0<t<50

即时巩固画出函数【解法一】由绝对值的概念可知,所以函数的图象如图所示:

的图象.

【解法二】(翻折法)先画出函数

的图象,然后把图象中位于横轴下方的部分翻转到上方即可.

123412即时巩固函数的实际应用【例题】下表是卢老师所在的初中某班三名同学在初三学年度6次历史测试的成绩

及班级平均分表.请你对这三位同学在初三学年的历史学习情况做一个分析.【分析】从表中可以知道每位同学在每次测试中的成绩,但不太容易分析每位同学

的成绩变化情况.如果将每位同学的成绩和测试序号之间的函数关系分别用

图象表示出来,就可以直观的看到他们成绩变化的情况.函数的实际应用【分析】从图象中我们可以直观地看到:吴思远同学的成绩一直稳定在班级的前茅,

吴畅畅同学的成绩波动较大,杨勇同学的成绩整体有下降趋势,但三位同

学的成绩基本上都大幅领先于班级平均水平.函数的实际应用【例题】某市“招手即停”公共汽车的票价按下列规则制定:(1)5km以内(含5km),票价2元;(2)5km以上,每增加5km,票价增加1元(不足5km按5km算).

如果某条线路的总里程为20km,请写出票价与里程之间的函数解析式,

并画出图象.【解】设票价为W元,里程为t千米,由题意可

写出解析式为:

图象如图:

510152054321·····复合函数【概念】设函数的定义域为A,值域为B,函数的定义域为C,

值域为D.如果B∩C≠∅,那么对于B∩C内的任意一个经过,有唯一

确定的与之对应.则变量和之间通过变量形成一种函数关系,

这种函数成为复合函数.记为.其中为自变量,为中间

变量,为因变量(函数).例如,如果,,那么就有,

即.

【例1】已知一次函数满足,求的解析式.

【解】由题意设

所以

解得

或.

所以

或.

【复合待定系数法】常考题型分析【例2】已知,求.【换元法】由题意令,则,所以,【换元法和配凑法】

即.

【配凑法】因为

所以

常考题型分析,,.【例3】已知函数满足,求的解析式.【解】在已知等式中,将换成,得与已知方程联立,得【已知中含有,求】

,消去

常考题型分析

【例4】已知,其中,求的解析式.【解】在原式中用替换,得与已知方程联立,得,【已知中含有,求】

常考题型分析

消去,得

随堂小测1.已知函数f(x)由下表给出,则f(f(3))等于A.1 B.2 C.3 D.4√√()()3.如果二次函数的图象开口向上且关于直线x=1对称,且过点(0,0),则此二次函数的解析式可以是()A.f(x)=x2-1B.f(x)=-(x-1)2+1C.f(x)=(x-1)2+1D.f(x)=(x-1)2-1√√所以f(5)=5f(4)=5×4f(3)=5×4×3f(2)=5×4×3×2f(1)=5×4×3×2×1×f(0)=5×4×3×2×1×2=240.故选C.()5.已知正方形的边长为x,它的外接圆的半径为y,则y关于x的解析式为()√6.画出y=2x2-4x-3,x∈(0,3]的图象,并求出y的最大值、最小值.解y=2x2-4x-3(0<x≤3)的图象如右:由图易知,当x=3时,ymax=2×32-4×3-3=3.由y=2x2-4x-3=2(x-1)2-5,∴当x=1时,ymin=-5.课堂小结1.如何求函数的解析式求函数的解析式的关键是理解对应关系f的本质与特点(对应关系就是对自变量进行对应处理的操作方法,与用什么字母表示无关),应用适当的方法,注意有的函数要注明定义域.主要方法有:待定系数法、换元法、解方程组法(消元法).2.如何作函数的图象一般地,作函数图象主要有三步:列表、描点、连线.作图象时一般应先确定函数的定义域,再在定义域内化简函数解析式,再列表描出图象,画图时要注意一些关键点,如与坐标轴的交点,端点的虚、实问题等.3.如何用函数图象常借助函数图象研究定义域、值域、函数变化趋势及两个函数图象交点问题.4.对分段函数的理解(1)分段函数是一个函数而非几个函数.分段函数的定义域是各段上“定义域”的并集,其值域是各段上“值域”的并集.(2)分段函数的图象应分段来作,特别注意各段的自变量取值区间端点处函数的取值情况,以决定这些点的虚实情况.设函数的定义域为A,值域为B,函数的定义域为C,

值域为D.如

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论