版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省广州市天河区2025届高三第二次诊断性检测数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设是虚数单位,复数()A. B. C. D.2.设集合、是全集的两个子集,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.2020年是脱贫攻坚决战决胜之年,某市为早日实现目标,现将甲、乙、丙、丁4名干部派遺到、、三个贫困县扶贫,要求每个贫困县至少分到一人,则甲被派遣到县的分法有()A.6种 B.12种 C.24种 D.36种4.若双曲线的一条渐近线与直线垂直,则该双曲线的离心率为()A.2 B. C. D.5.设,,则()A. B.C. D.6.已知实数满足不等式组,则的最小值为()A. B. C. D.7.设函数,则函数的图像可能为()A. B. C. D.8.函数fxA. B.C. D.9.已知函数且的图象恒过定点,则函数图象以点为对称中心的充要条件是()A. B.C. D.10.复数在复平面内对应的点为则()A. B. C. D.11.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案种数是()A.18种 B.36种 C.54种 D.72种12.设,随机变量的分布列是01则当在内增大时,()A.减小,减小 B.减小,增大C.增大,减小 D.增大,增大二、填空题:本题共4小题,每小题5分,共20分。13.如图所示,边长为1的正三角形中,点,分别在线段,上,将沿线段进行翻折,得到右图所示的图形,翻折后的点在线段上,则线段的最小值为_______.14.已知是夹角为的两个单位向量,若,,则与的夹角为______.15.变量满足约束条件,则目标函数的最大值是____.16.在三棱锥中,已知,且平面平面,则三棱锥外接球的表面积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)语音交互是人工智能的方向之一,现在市场上流行多种可实现语音交互的智能音箱.主要代表有小米公司的“小爱同学”智能音箱和阿里巴巴的“天猫精灵”智能音箱,它们可以通过语音交互满足人们的部分需求.某经销商为了了解不同智能音箱与其购买者性别之间的关联程度,从某地区随机抽取了100名购买“小爱同学”和100名购买“天猫精灵”的人,具体数据如下:“小爱同学”智能音箱“天猫精灵”智能音箱合计男4560105女554095合计100100200(1)若该地区共有13000人购买了“小爱同学”,有12000人购买了“天猫精灵”,试估计该地区购买“小爱同学”的女性比购买“天猫精灵”的女性多多少人?(2)根据列联表,能否有95%的把握认为购买“小爱同学”、“天猫精灵”与性别有关?附:0.100.050.0250.010.0050.0012.7063.8415.0246.6357.87910.82818.(12分)如图,四棱锥中,四边形是矩形,,为正三角形,且平面平面,、分别为、的中点.(1)证明:平面平面;(2)求二面角的余弦值.19.(12分)在平面直角坐标系中,曲线C的参数方程为(为参数).以原点为极点,x轴的非负半轴为极轴,建立极坐标系.(1)求曲线C的极坐标方程;(2)直线(t为参数)与曲线C交于A,B两点,求最大时,直线l的直角坐标方程.20.(12分)在正三棱柱ABCA1B1C1中,已知AB=1,AA1=2,E,F,G分别是棱AA1,AC和A1C1的中点,以为正交基底,建立如图所示的空间直角坐标系F-xyz.(1)求异面直线AC与BE所成角的余弦值;(2)求二面角F-BC1-C的余弦值.21.(12分)已知函数(,为自然对数的底数),.(1)若有两个零点,求实数的取值范围;(2)当时,对任意的恒成立,求实数的取值范围.22.(10分)在中,.(1)求的值;(2)点为边上的动点(不与点重合),设,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
利用复数的除法运算,化简复数,即可求解,得到答案.【详解】由题意,复数,故选D.【点睛】本题主要考查了复数的除法运算,其中解答中熟记复数的除法运算法则是解答的关键,着重考查了运算与求解能力,属于基础题.2、C【解析】
作出韦恩图,数形结合,即可得出结论.【详解】如图所示,,同时.故选:C.【点睛】本题考查集合关系及充要条件,注意数形结合方法的应用,属于基础题.3、B【解析】
分成甲单独到县和甲与另一人一同到县两种情况进行分类讨论,由此求得甲被派遣到县的分法数.【详解】如果甲单独到县,则方法数有种.如果甲与另一人一同到县,则方法数有种.故总的方法数有种.故选:B【点睛】本小题主要考查简答排列组合的计算,属于基础题.4、B【解析】
由题中垂直关系,可得渐近线的方程,结合,构造齐次关系即得解【详解】双曲线的一条渐近线与直线垂直.∴双曲线的渐近线方程为.,得.则离心率.故选:B【点睛】本题考查了双曲线的渐近线和离心率,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.5、D【解析】
由不等式的性质及换底公式即可得解.【详解】解:因为,,则,且,所以,,又,即,则,即,故选:D.【点睛】本题考查了不等式的性质及换底公式,属基础题.6、B【解析】
作出约束条件的可行域,在可行域内求的最小值即为的最小值,作,平移直线即可求解.【详解】作出实数满足不等式组的可行域,如图(阴影部分)令,则,作出,平移直线,当直线经过点时,截距最小,故,即的最小值为.故选:B【点睛】本题考查了简单的线性规划问题,解题的关键是作出可行域、理解目标函数的意义,属于基础题.7、B【解析】
根据函数为偶函数排除,再计算排除得到答案.【详解】定义域为:,函数为偶函数,排除,排除故选【点睛】本题考查了函数图像,通过函数的单调性,奇偶性,特殊值排除选项是常用的技巧.8、A【解析】
由f12=e-14>0排除选项D;【详解】由f12=e-14>0,可排除选项D,f-1=-e【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及x→09、A【解析】
由题可得出的坐标为,再利用点对称的性质,即可求出和.【详解】根据题意,,所以点的坐标为,又,所以.故选:A.【点睛】本题考查指数函数过定点问题和函数对称性的应用,属于基础题.10、B【解析】
求得复数,结合复数除法运算,求得的值.【详解】易知,则.故选:B【点睛】本小题主要考查复数及其坐标的对应,考查复数的除法运算,属于基础题.11、B【解析】
把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇即得.【详解】把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇,则不同的分配方案有种.故选:.【点睛】本题考查排列组合,属于基础题.12、C【解析】
,,判断其在内的单调性即可.【详解】解:根据题意在内递增,,是以为对称轴,开口向下的抛物线,所以在上单调递减,故选:C.【点睛】本题考查了利用随机变量的分布列求随机变量的期望与方差,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
设,,在中利用正弦定理得出关于的函数,从而可得的最小值.【详解】解:设,,则,,∴,在中,由正弦定理可得,即,∴,∴当即时,取得最小值.故答案为.【点睛】本题考查正弦定理解三角形的应用,属中档题.14、【解析】
依题意可得,再根据求模,求数量积,最后根据夹角公式计算可得;【详解】解:因为是夹角为的两个单位向量所以,又,所以,,所以,因为所以;故答案为:【点睛】本题考查平面向量的数量积的运算律,以及夹角的计算,属于基础题.15、5【解析】
分析:画出可行域,平移直线,当直线经过时,可得有最大值.详解:画出束条件表示的可行性,如图,由可得,可得,目标函数变形为,平移直线,当直线经过时,可得有最大值,故答案为.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的定点就是最优解);(3)将最优解坐标代入目标函数求出最值.16、【解析】
取的中点,设等边三角形的中心为,连接.根据等边三角形的性质可求得,,由等腰直角三角形的性质,得,根据面面垂直的性质得平面,,由勾股定理求得,可得为三棱锥外接球的球心,根据球体的表面积公式可求得此外接球的表面积.【详解】在等边三角形中,取的中点,设等边三角形的中心为,连接.由,得,,由已知可得是以为斜边的等腰直角三角形,,又由已知可得平面平面,平面,,,所以,为三棱锥外接球的球心,外接球半径,三棱锥外接球的表面积为.故答案为:【点睛】本题考查三棱锥的外接球的表面积,关键在于根据三棱锥的面的关系、棱的关系和长度求得外接球的球心的位置,球的半径,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)多2350人;(2)有95%的把握认为购买“小爱同学”、“天猫精灵”与性别有关.【解析】
(1)根据题意,知100人中购买“小爱同学”的女性有55人,购买“天猫精灵”的女性有40人,即可估计该地区购买“小爱同学”的女性人数和购买“天猫精灵”的女性的人数,即可求得答案;(2)根据列联表和给出的公式,求出,与临界值比较,即可得出结论.【详解】解:(1)由题可知,100人中购买“小爱同学”的女性有55人,购买“天猫精灵”的女性有40人,由于地区共有13000人购买了“小爱同学”,有12000人购买了“天猫精灵”,估计购买“小爱同学”的女性有人.估计购买“天猫精灵”的女性有人.则,∴估计该地区购买“小爱同学”的女性比购买“天猫精灵”的女性多2350人.(2)由题可知,,∴有95%的把握认为购买“小爱同学”、“天猫精灵”与性别有关.【点睛】本题考查随机抽样估计总体以及独立性检验的应用,考查计算能力.18、(1)见解析;(2)【解析】
(1)取中点,中点,连接,,.设交于,则为的中点,连接.通过证明,证得平面,由此证得平面平面.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值.【详解】(1)取中点,中点,连接,,.设交于,则为的中点,连接.设,则,,∴.由已知,,∴平面,∴.∵,∴,∵,∴平面,∵平面,∴平面平面.(2)由(1)及已知可得平面,建立如图所示的空间坐标系,设,则,,,,,,,,设平面的法向量为,∴,令得.设平面的法向量为,∴,令得,∴,∴二面角的余弦值为.【点睛】本小题主要考查面面垂直的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.19、(1);(2).【解析】
(1)利用消去参数,得到曲线的普通方程,再将,代入普通方程,即可求出结论;(2)由(1)得曲线表示圆,直线曲线C交于A,B两点,最大值为圆的直径,直线过圆心,即可求出直线的方程.【详解】(1)由曲线C的参数方程(为参数),可得曲线C的普通方程为,因为,所以曲线C的极坐标方程为,即.(2)因为直线(t为参数)表示的是过点的直线,曲线C的普通方程为,所以当最大时,直线l经过圆心.直线l的斜率为,方程为,所以直线l的直角坐标方程为.【点睛】本题考查参数方程与普通方程互化、直角坐标方程与极坐标方程互化、直线与曲线的位置关系,考查化归和转化思想,属于中档题.20、(1).(2).【解析】
(1)先根据空间直角坐标系,求得向量和向量的坐标,再利用线线角的向量方法求解.(2)分别求得平面BFC1的一个法向量和平面BCC1的一个法向量,再利用面面角的向量方法求解.【详解】规范解答(1)因为AB=1,AA1=2,则F(0,0,0),A,C,B,E,所以=(-1,0,0),=记异面直线AC和BE所成角为α,则cosα=|cos〈〉|==,所以异面直线AC和BE所成角的余弦值为.(2)设平面BFC1的法向量为=(x1,y1,z1).因为=,=,则取x1=4,得平面BFC1的一个法向量为=(4,0,1).设平面BCC1的法向量为=(x2,y2,z2).因为=,=(0,0,2),则取x2=得平面BCC1的一个法向量为=(,-1,0),所以cos〈〉==根据图形可知二面角F-BC1-C为锐二面角,所以二面角F-BC1-C的余弦值为.【点睛】本题主要考查了空间向量法研究空间中线线角,面面角的求法,还考查了转化化归的思想和运算求解的能力,属于中档题.21、(1);(2)【解析】
(1)将有两个零点转化为方程有两个相异实根,令求导,利用其单调性和极值求解;(2)将问题转化为对一切恒成立,令,求导,研究单调性,求出其最值即可得结果.【详解】(1)有两个零点关于的方程有两个相异实根由,知有两个零点有两个相异实根.令,则,由得:,由得:,在单调递增,在单调递减,又当时,,当时,当时,有两个零
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版存量房买卖合同履行监督居间协议3篇
- 2025年度生物医药厂房租赁居间服务协议书4篇
- 2025年度临时建筑拆除施工管理协议4篇
- 二零二五版生产线承包与工业互联网服务合同3篇
- 专业视频剪辑服务与许可合同(2024)版B版
- 2025年测绘仪器租赁与售后服务合同4篇
- 2025年度文化旅游区场地租赁及特色项目开发合同4篇
- 2025年度叉车租赁企业安全生产责任合同4篇
- 2025年度工业自动化设备租赁合同书(二零二五版)4篇
- 2025年度太阳能发电站拆除与新能源设施安装合同4篇
- 2025年湖北武汉工程大学招聘6人历年高频重点提升(共500题)附带答案详解
- 【数 学】2024-2025学年北师大版数学七年级上册期末能力提升卷
- GB/T 26846-2024电动自行车用电动机和控制器的引出线及接插件
- 辽宁省沈阳市皇姑区2024-2025学年九年级上学期期末考试语文试题(含答案)
- 2024年国家工作人员学法用法考试题库及参考答案
- 妊娠咳嗽的临床特征
- 国家公务员考试(面试)试题及解答参考(2024年)
- 《阻燃材料与技术》课件 第6讲 阻燃纤维及织物
- 2024年金融理财-担保公司考试近5年真题附答案
- 泰山产业领军人才申报书
- 高中语文古代文学课件:先秦文学
评论
0/150
提交评论