版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省邵阳市邵东县创新实验学校2025届高三第四次模拟考试数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线:()的焦点为,为该抛物线上一点,以为圆心的圆与的准线相切于点,,则抛物线方程为()A. B. C. D.2.已知函数,则下列结论错误的是()A.函数的最小正周期为πB.函数的图象关于点对称C.函数在上单调递增D.函数的图象可由的图象向左平移个单位长度得到3.关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,某同学通过下面的随机模拟方法来估计的值:先用计算机产生个数对,其中,都是区间上的均匀随机数,再统计,能与构成锐角三角形三边长的数对的个数﹔最后根据统计数来估计的值.若,则的估计值为()A. B. C. D.4.如图,圆是边长为的等边三角形的内切圆,其与边相切于点,点为圆上任意一点,,则的最大值为()A. B. C.2 D.5.已知函数,,当时,不等式恒成立,则实数a的取值范围为()A. B. C. D.6.德国数学家莱布尼兹(1646年-1716年)于1674年得到了第一个关于π的级数展开式,该公式于明朝初年传入我国.在我国科技水平业已落后的情况下,我国数学家、天文学家明安图(1692年-1765年)为提高我国的数学研究水平,从乾隆初年(1736年)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有《割圆密率捷法》一书,为我国用级数计算π开创了先河.如图所示的程序框图可以用莱布尼兹“关于π的级数展开式”计算π的近似值(其中P表示π的近似值),若输入,则输出的结果是()A. B.C. D.7.已知i是虚数单位,则1+iiA.-12+32i8.已知直四棱柱的所有棱长相等,,则直线与平面所成角的正切值等于()A. B. C. D.9.函数的图象大致为A. B. C. D.10.若x∈(0,1),a=lnx,b=,c=elnx,则a,b,c的大小关系为()A.b>c>a B.c>b>a C.a>b>c D.b>a>c11.已知等差数列的前项和为,若,,则数列的公差为()A. B. C. D.12.在我国传统文化“五行”中,有“金、木、水、火、土”五个物质类别,在五者之间,有一种“相生”的关系,具体是:金生水、水生木、木生火、火生土、土生金.从五行中任取两个,这二者具有相生关系的概率是()A.0.2 B.0.5 C.0.4 D.0.8二、填空题:本题共4小题,每小题5分,共20分。13.某种圆柱形的如罐的容积为个立方单位,当它的底面半径和高的比值为______.时,可使得所用材料最省.14.设是定义在上的函数,且,对任意,若经过点的一次函数与轴的交点为,且互不相等,则称为关于函数的平均数,记为.当_________时,为的几何平均数.(只需写出一个符合要求的函数即可)15.已知均为非负实数,且,则的取值范围为______.16.已知,则________.(填“>”或“=”或“<”).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)解不等式;(2)若,,,求证:.18.(12分)已知,函数的最小值为1.(1)证明:.(2)若恒成立,求实数的最大值.19.(12分)已知函数.(1)当时,求不等式的解集;(2)若关于的不等式的解集包含,求实数的取值范围.20.(12分)已知函数.(Ⅰ)若是第二象限角,且,求的值;(Ⅱ)求函数的定义域和值域.21.(12分)已知.(1)若曲线在点处的切线也与曲线相切,求实数的值;(2)试讨论函数零点的个数.22.(10分)如图,在平面直角坐标系xOy中,已知椭圆的离心率为,以椭圆C左顶点T为圆心作圆,设圆T与椭圆C交于点M与点N.(1)求椭圆C的方程;(2)求的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:为定值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
根据抛物线方程求得点的坐标,根据轴、列方程,解方程求得的值.【详解】不妨设在第一象限,由于在抛物线上,所以,由于以为圆心的圆与的准线相切于点,根据抛物线的定义可知,、轴,且.由于,所以直线的倾斜角为,所以,解得,或(由于,故舍去).所以抛物线的方程为.故选:C【点睛】本小题主要考查抛物线的定义,考查直线的斜率,考查数形结合的数学思想方法,属于中档题.2、D【解析】
由可判断选项A;当时,可判断选项B;利用整体换元法可判断选项C;可判断选项D.【详解】由题知,最小正周期,所以A正确;当时,,所以B正确;当时,,所以C正确;由的图象向左平移个单位,得,所以D错误.故选:D.【点睛】本题考查余弦型函数的性质,涉及到周期性、对称性、单调性以及图象变换后的解析式等知识,是一道中档题.3、B【解析】
先利用几何概型的概率计算公式算出,能与构成锐角三角形三边长的概率,然后再利用随机模拟方法得到,能与构成锐角三角形三边长的概率,二者概率相等即可估计出.【详解】因为,都是区间上的均匀随机数,所以有,,若,能与构成锐角三角形三边长,则,由几何概型的概率计算公式知,所以.故选:B.【点睛】本题考查几何概型的概率计算公式及运用随机数模拟法估计概率,考查学生的基本计算能力,是一个中档题.4、C【解析】
建立坐标系,写出相应的点坐标,得到的表达式,进而得到最大值.【详解】以D点为原点,BC所在直线为x轴,AD所在直线为y轴,建立坐标系,设内切圆的半径为1,以(0,1)为圆心,1为半径的圆;根据三角形面积公式得到,可得到内切圆的半径为可得到点的坐标为:故得到故得到,故最大值为:2.故答案为C.【点睛】这个题目考查了向量标化的应用,以及参数方程的应用,以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法.5、D【解析】
由变形可得,可知函数在为增函数,由恒成立,求解参数即可求得取值范围.【详解】,即函数在时是单调增函数.则恒成立..令,则时,单调递减,时单调递增.故选:D.【点睛】本题考查构造函数,借助单调性定义判断新函数的单调性问题,考查恒成立时求解参数问题,考查学生的分析问题的能力和计算求解的能力,难度较难.6、B【解析】
执行给定的程序框图,输入,逐次循环,找到计算的规律,即可求解.【详解】由题意,执行给定的程序框图,输入,可得:第1次循环:;第2次循环:;第3次循环:;第10次循环:,此时满足判定条件,输出结果,故选:B.【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,得到程序框图的计算功能是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.7、D【解析】
利用复数的运算法则即可化简得出结果【详解】1+i故选D【点睛】本题考查了复数代数形式的乘除运算,属于基础题。8、D【解析】
以为坐标原点,所在直线为x轴,所在直线为轴,所在直线为轴,建立空间直角坐标系.求解平面的法向量,利用线面角的向量公式即得解.【详解】如图所示的直四棱柱,,取中点,以为坐标原点,所在直线为x轴,所在直线为轴,所在直线为轴,建立空间直角坐标系.设,则,.设平面的法向量为,则取,得.设直线与平面所成角为,则,,∴直线与平面所成角的正切值等于故选:D【点睛】本题考查了向量法求解线面角,考查了学生空间想象,逻辑推理,数学运算的能力,属于中档题.9、D【解析】
由题可得函数的定义域为,因为,所以函数为奇函数,排除选项B;又,,所以排除选项A、C,故选D.10、A【解析】
利用指数函数、对数函数的单调性直接求解.【详解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小关系为b>c>a.故选:A.【点睛】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.11、D【解析】
根据等差数列公式直接计算得到答案.【详解】依题意,,故,故,故,故选:D.【点睛】本题考查了等差数列的计算,意在考查学生的计算能力.12、B【解析】
利用列举法,结合古典概型概率计算公式,计算出所求概率.【详解】从五行中任取两个,所有可能的方法为:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共种,其中由相生关系的有金水、木水、木火、火土、金土,共种,所以所求的概率为.故选:B【点睛】本小题主要考查古典概型的计算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
设圆柱的高为,底面半径为,根据容积为个立方单位可得,再列出该圆柱的表面积,利用导数求出最值,从而进一步得到圆柱的底面半径和高的比值.【详解】设圆柱的高为,底面半径为.∵该圆柱形的如罐的容积为个立方单位∴,即.∴该圆柱形的表面积为.令,则.令,得;令,得.∴在上单调递减,在上单调递增.∴当时,取得最小值,即材料最省,此时.故答案为:.【点睛】本题考查函数的应用,解答本题的关键是写出表面积的表示式,再利用导数求函数的最值,属中档题.14、【解析】
由定义可知三点共线,即,通过整理可得,继而可求出正确答案.【详解】解:根据题意,由定义可知:三点共线.故可得:,即,整理得:,故可以选择等.故答案为:.【点睛】本题考查了两点的斜率公式,考查了推理能力,考查了运算能力.本题关键是分析出三点共线.15、【解析】
设,可得的取值范围,分别利用基本不等式和,把用代换,结合的取值范围求关于的二次函数的最值即可求解.【详解】因为,,令,则,因为,当且仅当时等号成立,所以,,即,令则函数的对称轴为,所以当时函数有最大值为,即.当且,即,或,时取等号;因为,当且仅当时等号成立,所以,令,则函数的对称轴为,所以当时,函数有最小值为,即,当,且时取等号,所以.故答案为:【点睛】本题考查基本不等式与二次函数求最值相结合求代数式的取值范围;考查运算求解能力和知识的综合运用能力;基本不等式:和的灵活运用是求解本题的关键;属于综合型、难度大型试题.16、【解析】
注意到,故只需比较与1的大小即可.【详解】由已知,,故有.又由,故有.故答案为:.【点睛】本题考查对数式比较大小,涉及到换底公式的应用,考查学生的数学运算能力,是一道中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】
(1)分、、三种情况解不等式,即可得出该不等式的解集;(2)利用分析法可知,要证,即证,只需证明即可,因式分解后,判断差值符号即可,由此证明出所证不等式成立.【详解】(1).当时,由,解得,此时;当时,不成立;当时,由,解得,此时.综上所述,不等式的解集为;(2)要证,即证,因为,,所以,,,.所以,.故所证不等式成立.【点睛】本题考查绝对值不等式的求解,同时也考查了利用分析法和作差法证明不等式,考查分类讨论思想以及推理能力,属于中等题.18、(1)2;(2)【解析】分析:(1)将转化为分段函数,求函数的最小值(2)分离参数,利用基本不等式证明即可.详解:(Ⅰ)证明:,显然在上单调递减,在上单调递增,所以的最小值为,即.(Ⅱ)因为恒成立,所以恒成立,当且仅当时,取得最小值,所以,即实数的最大值为.点睛:本题主要考查含两个绝对值的函数的最值和不等式的应用,第二问恒成立问题分离参数,利用基本不等式求解很关键,属于中档题.19、(1)(2)【解析】
(1)按进行分类,得到等价不等式组,分别解出解集,再取并集,得到答案;(2)将问题转化为在时恒成立,按和分类讨论,分别得到不等式恒成立时对应的的范围,再取交集,得到答案.【详解】解:(1)当时,等价于或或,解得或或,所以不等式的解集为:.(2)依题意即在时恒成立,当时,,即,所以对恒成立∴,得;当时,,即,所以对任意恒成立,∴,得∴,综上,.【点睛】本题考查分类讨论解绝对值不等式,分类讨论研究不等式恒成立问题,属于中档题.20、(Ⅰ)(Ⅱ)函数的定义域为,值域为【解析】
(1)由为第二象限角及的值,利用同角三角函数间的基本关系求出及的值,再代入中即可得到结果.(2)函数解析式利用二倍角和辅助角公式将化为一个角的正弦函数,根据的范围,即可得到函数值域.【详解】解:(1)因为是第二象限角,且,所以.所以,所以.(2)函数的定义域为.化简,得,因为,且,,所以,所以.所以函数的值域为.(注:或许有人会认为“因为,所以”,其实不然,因为.)【点睛】本题考查同角三角函数的基本关系式,三角函数函数值求解以及定义域和值域的求解问题,涉及到利用二倍角公式和辅助角公式整理三角函数关系式的问题,意在考查学生的转化能力和计算求解能力,属于常考题型.21、(1)(2)答案不唯一具体见解析【解析】
(1)利用导数的几何意义,设切点的坐标,用不同的方式求出两种切线方程,但两条切线本质为同一条,从而得到方程组,再构造函数研究其最大值,进而求得;(2)对函数进行求导后得,对分三种情况进行一级讨论,即,,,结合函数图象的单调性及零点存在定理,可得函数零点情况.【详解】解:(1)曲线在点处的切线方程为,即.令切线与曲线相切于点,则切线方程为,∴,∴,令,则,记,于是,在上单调递
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年企业级软件升级服务协议典范版
- 2024定制版农家乐装饰服务协议精要版B版
- 2024年展会特装设计与装饰服务协议版B版
- 2024年度乙方对厂房的还款责任3篇
- 2024年定制化服务器购买合同范本版
- 2024专业消防工程设计服务协议模板一
- 2024年定制婚礼顾问服务协议版
- 2024年度企业运营优化咨询合作合同一
- 2024就业协议书20篇
- 2024年那曲客运资格证考试题库下载
- 滑雪用手套市场洞察报告
- 专题01 一元二次方程(5大基础题+4大提升题)(解析版)-2024-2025学年九年级数学上学期期中真题分类汇编
- 小型喷烤漆房布局方案
- 食品质量安全法律法规培训
- 封山育林工程施工组织方案设计
- 2024年度★电商平台入驻协议
- 中小学营养餐家长参与方案
- 《财务基础知识培训》课件
- 抖音带货主播小白培训
- 2024秋期河南开放大学本科《公司法律实务(本)》一平台无纸化考试(形考任务1至3+我要考试)试题及答案
- 人教版2024年小学二年级上学期语文期末考试往年真题
评论
0/150
提交评论