版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
FT
AIand
theR&D
revolution
TheFTTechforGrowthForumissupportedby
Foreword
T
hislatestreportfromtheFinancialTimesTechfor
GrowthForumaddressesafundamentalquestion
facingcompaniestoday:howdowefosterinnovationinordertodrivegrowth?
Businessesalreadyknowthatthereturnswhichflowfromusingadvancedtechnologiessuchasartificialintelligence
areconsiderable.Thekeyforleadersisunderstandinghowto
unlockthatpotentialbyoptimisingtheirinvestmentinresearchanddevelopment.
Thisreportdrawsonexperttestimonytooffercompaniesa
strategythatwilltakethemtothecuttingedgeoftechnologyandinnovation.
JonathanDerbyshire
Visittheeditorialhubat
/tech-for-growth-forum
TechforGrowthForumEditorFinancialTimes
AIandthe
R&Drevolution
Howcanthisfast-changingtechnologyhelpprovidersupdateproductsmoreefficientlyandsuccessfullyateachstageofR&D.ByLucyColback
andconsumerproducts,anticipatethatathirdofsales,
worth$30tnoverfiveyears,willcomefromnewproducts.
I
naworldoffast-changingconsumerpreferencesandincreasingchoice,companiesthatwanttostayaheadmustworkcontinuouslytoensurethattheirgoodsandservicessatisfythecustomer.In2023McKinseysaidthatbigindustries,includingautomotive,telecoms
Advancementiskeyandtheleveloffreshfundsflowing
intoresearchanddevelopmentisconsiderable.According
tothelatestUKstatistics,£71bnwasspentonR&Din2022,ofwhich£50bncamefromthebusinesssector.IntheUSthefigureisestimatedtobe$886bnwithbusinessaccountingfor$690bn.
Thereturnfromusingadvancedtechnologiesis
considerable.Lookingatthepharmaindustry,Accenture
estimatesthatscaleduseandredesignedworkflowswill
meanthatmedicinescanbebroughttomarketfouryears
faster,earninganextra$2bnforeachsuccessfuldrug.Costsof$2.6bnto$6.7bncouldalsobescythedbyupto45percent.
Withsuchlargesumsatstake,companieswillhaveto
thinkcarefullyaboutwhereandhowtheyspendtheircashtoreachtheconsumer.
Inapreviousreportwestudiedtheroleoftechnologyinmarketingandhowbusinessescanusetechnologytoolstofosterloyaltywithpersonalisedmessagingandtocreateholisticcross-channelstrategies.
Turningtothefrontendoftheproductcycle,thisreportwillexaminehowtechnologycanhelpprovidersupdate
productsmoreefficientlyandsuccessfullyateachstageofR&D.
Thebusinesscaseforsimulationisshifting,withfastertime-to-marketandreducedproductcost
askeyfuturevaluedrivers
Pastvaluedriversofapplyingsimulationtechniques(%)Futurevaluedrivers(%)
Improvedproductperformance
Reductionofproductcost
Reductionofengineeringcost
Fastertime-to-market
Zeroprotoyping
87
73
73
58
67
Fastertime-to-market
Reductionofproductcost
Improvedproductperformance
Reductionofengineeringcost
Zeroprotoyping
73
72
72
70
65
Source:McKinsey
Wearealltechnologycompanies
Mindsetisanimportantfactorininnovation.Sean
Ammirati,professorofentrepreneurshipatCarnegieMellonUniversity,Pennsylvania,saysanentrepreneurialculture
insidetheR&Dfunctionhelpscompaniestoinnovate—eventhelargeones.Teamswithsuchamindsetaremorelikely
tocomeupwithtransformationalratherthanincrementalproductdevelopments.
Ammirati,whohasfoundedseveralmachine-learning
start-ups,saysmanycompaniesdonotmakethenecessaryinvestmentinadjacentandtransformationalinnovation.Heciteda2012paperbyHarvardBusinessReview,whichstated:“Companiesthatallocated70percentofinnovationactivitytocoreinitiatives,20percenttoadjacentonesand10percenttotransformationalonesoutperformedtheir
peers.”
Technologycompaniesshouldinvestmoreinthesetwo
areas,thesameresearchsaid.Giventoday’subiquityof
technology,AmmiratisaysthateverybusinessshouldthinkofitselfasatechnologycompanywhenitdecidesitsR&D
budget.
Identifyyourtarget
Itisimportanttoidentifywhataproductistryingto
achieveandwhoisthetarget—thismightnotalways
beobvious.Pella,theIowawindowanddoormaker,has
designedamechanismthattreatstheinstallerratherthan
thehomeownerasitscustomer.Basedonobservationsandresponses,Pella’snewwindowiseasytoinstallfromthe
insideratherthantheoutsideofaproperty,reducingtherisktoworkerswhenputtingwindowsintotallbuildings.
TargetsareimportantfortheR&Dprocess,too.This
shouldincludedecidingiftheobjectivesincludecuttingthecostofmaterials,thecostofengineering,timetomarket,
orallthree.Havingthisinmindhelpswithsettingkey
performanceindicatorstoassesswhetheraprocessworks.
ConfidenceinthecapabilitiesofAIandML
isdrivingadoption
‘Accuracyofresults’asacriterionfortoolselection(%ofsurveyresults)
AI/ML-basedsimulationoperationalised
mmNoorverylimitedusageofAI/ML-basedsimulation
20
80
9
91
Accuracyofresults
isacriterionfor
toolselection
(n=70)
Accuracyofresults
isnotacriterion
fortoolselection
(n=30)
Source:McKinsey
Theroleofdata
Customerneedsshouldalwaysbetheinspirationforproductdevelopment.Themoredatathatisavailable,theeasier
thesearetodefine.Dataiscriticaltoanytechnologystrategy.Itcan,forinstance,alertcompaniestowhatcustomersare
seekingandwhatisindemand.
Onlinemarketplaceshaveextensiveaccesstodataaboutpurchasinginformationandshoppingsearcheswhichcan
givethemanadvantageoverthevendorswhousetheirsites.
Asweobservedinourreportontheplatformeconomy,thereisvalueinbrandshostingtheirownwebsitesasa
meanstoretainandinterpretcustomerdata.Thiscan
giveinstantinsightsintomodifyingoraddingtowhattheyoffer.ForexamplethebracompanyLivelyintroduced
straplessbrastoitsrangeafteritfoundthatmanywomenweresearchingforthese.TommyJohn,whichmakesmen’sunderwear,foundthatwomenlikeditsproductstooand
itaddedsecond-skin“boyshorts”,teesandpantsaimedatfemales.
Whencollectingorcompilingdata,itisimportantforittobeclean.Thisisespeciallythecasewhendeployingartificialintelligencesystemswhichareinessencestatisticalmodelsthatfeedondata.“Thismeansyourteamneedstocareaboutdata,”Ammiratisays.“Ifyourteamarebeingsloppywith
howtheyenterdatayou’reactuallycausingdownstreamproblems.”
Increasinglyproductscanbedevelopedfora“segmentofone”usingcustomerinformation.SkincarerangessuchasFentyBeautyofferproductstosuitacustomer’sskintone
usingacombinationofimagerecognitionandmachine
learning.Othercompaniesusecustomer-supplieddata
orinsightsgleanedfrompreviouspurchasestosuggestor
customiseproducts.NikeByYouallowscustomerstocreatetheirowntrainersfromapaletteofstyles,coloursand
designs.
Theco-creationofproductsgoesbeyondpersonalisation,Thisiswherecustomersadvisecompanieswhattheywantbyspecifyingmodificationsbeyondthosegiveninadrop-downlist.Ikeaisamongthegroupsthathaveco-createdproductswithcustomersforseveralyears.
AtasummitonAIhostedbyBloomreach,AzitaMartin,
vice-presidentofAIforretailatNvidia,saidthenextchallengeformanycompanieswouldbeinfulfillinghighlypersonalisedorders—essentiallyforamarketofone—quicklyenoughto
satisfytheconsumer.Shesaidthecorrectforecasting,fasterthroughputindistributioncentres(usingcomputervision,roboticsandsimulation)andlast-miledeliverywereareaswhereAIcouldgiveretailersmoreagility.
‘Ifyourteamarebeing
sloppywithhowthey
enterdatayou’re
actuallycausing
downstreamproblems’
Fromconcepttoreality
Peoplecanstillcomeupwithproductideasindependentlyofdata.TechnologycanhelptoacceleratethesetomarketandAIisapowerfultoolinthatprocess.
WhilehumanoversightwillremainasimportantforR&Dasitisforthecreationofmarketingcontent,generative
AIbasedonlargelanguagemodelswillbeinvaluableasa
“conversationstarter”.Presentedwithanideaorevena
vagueconcept,generativeAIcanhelpwithbrainstormingtohelpdevelopaproduct,undertakemarketresearchtofindiftherearesimilaritems,identifyandanalysecompetitorsandgivethoughtsonhowtocreateadifference.AIcanprovide
manyversionsofaproductandsuggestmodificationstosuitanichethatahumandesignermightnothaveconsidered.
Oncetheproductconcepthasbeenhoned,AIcanhelp
todevisemarket-testingstrategiesaswellasaccelerate
producttestinganddesign.Itcancreateandtestiterationsofaproductataspeedfarfasterthanahuman.Itcansuggestmaterialsandsourcingaswellasmanufacturingprocesses.
Thisisparticularlyhelpfulforstart-upsandsmaller
businesses.ThefounderofSkittenz,acompanythatmakesmittencoverstoenlivenskigloves,usedAItoinvestigatewhichmaterialsandmanufacturingprocessesmightbe
suitabletobringtheproducttomarket.
‘Thisisnotsomething
thatyoucanonlytrain
yourexecutiveson.This
issomethingthat
everybodyinthe
organisationneedsto
beawareof’
SuperchargingwithAI
AIisalsoinvaluableforanestablishedR&Dteam,eventhosethatdeploymoretraditionalsystemsandprograms,which
wewillcoverbelow.TheseareincreasinglyaugmentedbyAI,enablingdesignerstodevisemoreoptionsmorequicklythantheunderlyingsoftwarealone.Ammirati,whohasspecialisedinbothcorporateinnovationandAIintheenterprise,saysthatinthepastthreeyearsthesetwoworkstreamshavemerged
andcannolongerbeconsideredseparateareasofexpertise.
BasedonfindingsfromaforumofR&DleadersinJuly
2024,McKinseysaysthatbothanalyticalandgenerative
AIarelikelytohaveabigeffectoninnovationoutcomes.It
estimatesincreasedmarketfitofupto50percent,productperformanceimprovementsof15to60percent,increased
workplaceproductivityofupto50percentandupto40
percentreductionintimetomarket.Simulationsanddeeplearningsurrogatesinparticularincreasetestingcapabilities.Bainresearchmakessimilarfindings,withengineeringhoursreducedbyuptoafifthandcostfallingbybetween5and30percent.
Bothstressthatstakeholders’buy-inisessentialinthe
digitalisationprocess.Thismightbemoreeasilyachievedinaworkforceifleadersareclearthattech,andAIspecifically,
isalongwayfromreplacingpeople.Amongotherreasons,
thisisduetothecontinued,ifdiminished,incidenceof
hallucinations(whenAIcreatesinformationandpresentsitasfact).“HumanplusAI”willbethefuture,especiallyforR&D.
Ammiratisays:“Therightmentalmodelistothinkof
generativeAIasaco-founder,orwhatisoftendescribedas
‘humanintheloopAI’.Sothinkofitmorelikeabrainstormingbuddy,morelikesomeonewhoautomatesfirstdraftsthan
doesalltheworkforyou.”
WhileAIwillnottakeyourjob,hesays,companiesusingthetoolwillbe“incrediblydisruptive”tothosewhoarenot.“Thisisnotsomethingthatyoucanonlytrainyourexecutiveson.
Thisissomethingthateverybodyintheorganisationneedstobeawareof.”Tokeepupwiththecompetition,nevermindstayahead,businessleadersmusteducatetheirworkforceinhowtouseAI.
Thisdoesnotnecessarilymeanteachingprompt
engineering,whichAmmiratibelieveswillbecomeobsoleteasinterfaceschange.IndeedanewinterfaceisalreadyhereintheformofAIagents.TheseLLM-basedAIappscansummonthehelpoftoolsanddataandsoarenotboundbytheconstraintsofthemostrecentupdate.Overtimetheylearnuser
preferences,retainconversationsforcontextandcanaccessanddeployotherprogramsandinformationautonomouslyinresponsetouserrequests,optimisingworkflowsandcreatingsubtasks.
ToomanybusinessesarenotreadytoharnessAIeffectively.TheStateofAI2024,aglobalsurveyof300seniorexecutivesbySearce,themoderntechnologyconsultant,foundthatwhileallUKandUSrespondentswereusingorplanningtouseAI,
only14percentofcompanieshadmanagedtoscalebeyondthepilotstage.
Impedimentsincludedlackoftalent,especiallyforUK
respondents,whichsuggeststhosecompaniesthatarequicktoinvestineducatingtheircurrentworkforcewillhaveanadvantage.Badlymanageddataandpoorlyprioritiseduseswerefurtherbarrierstosuccessfuladoption.
Despitethehurdles,adoptionisnolongeroptional.For
thosethatarestillnotconvinced,Ammiratisayswehave
reacheda“generaltechnologyinflectionpoint”.Thinkofitassimilartowhentheinternetarrived.“Thebusinesseswhosaidno,we’rejustgoingtoavoidthatinternetthing—mostofthem,unfortunately,arenotaround.”
ClassicsimulationuseissignificantlyaheadofAl-andML-basedsimulationuse
Companies’usesofclassicalvsAl/MLsimulationtechniquesbytechnologymaturitylevel(%ofcompanies)
None
Mostlyproofofconceptsorpilots
Useofhighlymaturevirtualengineeringtechnologiesatscale
10x
morecompaniesuseclassicsimulationcomparedtoAl/ML-basedsimulationatahighmaturitylevel
1
1
48
51
34
61
5
2/3
organisationsalreadyuseAI/MLfor
simulations
Classicalsimulation
techniques
(egMBS,FEA,CFD)
AI/ML-basedsimulation techniques(egneuralnetwork,deeplearning)
Source:McKinsey
AutomotivepullsawayastheleadingindustrytoputAlandMLtouse
Al/MLusagebyindustry(%)
Simulationusers
withinautomotiveare1.6xmore
likelytouse
Al/ML-basedsimulationscomparedtomachinery
59
58
50
47
76
Automotive
(n=42)
Aerospace
anddefence
(n=16)
Basicmaterials
(n=27)
Medicaldevices
(n=19)
Machineryand
fabricatedmetals
(n=18)
Source:McKinsey
TechnologiesavailableforR&D
StepsintheR&DprocesssuchastestingandpredictivemodellingincreasinglytakeadvantageofAI,includingmachinelearningandstatisticalmodelling.Theseareenabledatgreaterspeedandscalebytheincreased
processingpowerofcloudcomputing.Whilethisisnotareplacementforexpertoversight,GenAIprovidesan
intuitiveinterfaceforthosewhomaynothavethetechnicaltrainingthatwasonceessentialevenforearlyproduct
development.Thetechnologiesinclude:
MarketResearch
Digitallydistributedmarketsurveys,suchasthoseofferedbySurveyMonkey,GoogleFormsandTypeformtonamejustafew,offerhugereachandenhancedanalytics.
Design
CAD-CAMsoftwaresuchasthatprovidedbyAutodesk,
SiemensandTrimbleisusedfordesigninfieldssuchas
engineering,architectureandmanufacturing.ManyoftheprogramsincorporateAIwhichquicklyprovidesagreater
numberofalternativedesigns.So-calledgenerativedesigndeploysAIalgorithmsderivedbymachinelearning,whichcancomeupwithdesignsoptimisedfordifferentparameterssuchasmaterialeconomiesorstrength.Providedthe
engineerspecifiesminimumrequirementsandconstraintssuchasmanufacturingprocess,loadsandflexibility,the
systemcanoffermanyvariations,someofwhicharelikelytobenovel.
Prototyping
Thistoo“willnowalmostalwaysstartinthedigital
environment”,saysMarkRidley,aformerchieftechnologyofficeroftheFinancialTimeswhoisnowatechnology
consultant.Puredigitalprototyping,hesays,canmassivelyreducecost,whichwillallowmanymoreattempts.Machine-learningmodelsfacilitatedbycloudcapacityhaveenabledmoredigitalexperimentationintheR&Dprocess.Cloud
computingmeanscompaniesnolongerneedbigbudgets
tobuyin-houseserversforcomplexcomputations.“The
technologyofthecloudallowedforreallysignificant
innovation...becauseitprovideddemocratisedtechnology,whichcouldthenbeusedbysmallentrepreneurialteams.”
Ridleyadds:“Thebeautyhereisthatwiththeincreaseincomputationalpower[and]theavailabilityofsoftwaretodothesethings,designerscannowaugmentmoretraditional
modelslikecomputationalfluiddynamicswithML-basedgenerativedesign.”
‘Youwanttokeep
everyfailed
experiment—because
thefailedexperiments
aresourcesoflearning’
Simulations
Theseareincreasinglypopularfortestingmarketing
strategies,suchasdecidingwhichwordingbesttargetsthecustomerandwhichcommunicationsmediumtochoose.
SimulationsuseA/Btesting(comparingdifferentversionsofastrategy).Theyassumethataproductisalreadyviableandthatthesalesperformancewillbeaffectedbymarketingratherthanhowtheproductisdesignedandperforms.
Simulationscanalsobeusedforproductdevelopment,
testingforvariationsinmaterialsanddesign—oftenusing
thesamesoftwareasthatusedtodesigntheproduct.
EngineeringsoftwarefromproviderssuchasAnsysand
Matlabenablesdesignerstorenderobjectsvirtuallyand
simulatesystemsinwhichtotestandanalyseaspectsoftheirbehaviourindifferentenvironments,forinstancetheirfluidandthermaldynamics.Thevalueinsuchsoftwareliesin
beingabletotestwithoutaphysicalprototype.
Understandingmarketreceptivenesstotheproductisthenextstep.Whileadjacenttomarketing,thisislessbasedontestingastrategyandmoredesignedtodetermineviability.Modellingsoftwarecanhelpinareassuchascomparing
pricingandperformanceagainstcompetitors.Itcanalso
examinetheeffectofdifferenteconomicenvironmentsandcompetitoractions.Itiseasiertotestmaterialordesign
behaviourinasimulationthanitistotrytoassesshumanbehaviour,whichissomuchmoreunpredictable.
Whilesimulationscanbeaprocessingburden,augmentedcapacitycancomefromcloudcomputing.
3Dprinting
Oncesimulationsandtestshaverunsuccessfullythereis
stillmorethatcanbedonewithoutnecessarilyinvestingintheactualproduct.Ridleysaysprocessesusedtorequire
drawingsfollowedbyclaymodelling.Digitalisationhas
significantlyloweredthebarrierstoproduction.“Theclaymodelrequiresartistryanddeepexpertise.Andwhatwe’reseeingnowisthatitiseasiertobuypatternsandcheap
technologyofftheshelfonacreditcard.Thatenablesmoreusersandsmallgroupstodotheinnovationthemselves.”
GenAIinterfacingwith3Dprintingmighteventually
allowacreatortodiscusstheattributesitwantsfroma
givenproduct,Ridleysays.Theymightforinstanceaskthecomputertocomeupwithvariantsofamopthatsimplifyaspectssuchascleaningintocorners,rinsingorapplyingdetergent.
Toproduceinjection-mouldedplasticscomponents,
normallyrequiringexpensiveandspecialisedmachinery,
Boschhasdevelopedadvanced3DprintingwithAI
algorithms.Thesecanadjustsubstrateinputs,heatand
pressureinrealtime,ensuringthatprototypequalityisasgoodastheendproduct.Thisalsoallowsforsmallbatch
productionbeforeinvestmentinlarge-scalefacilities.
SeparatelyBoschhasdevelopedceramic3Dprintingwhichmodelsthedifferentshrinkagesexperiencedwhenanobjectiskiln-fired.
Digitaltwinning
Adigitaltwinisavirtualmodelofaplannedoractualreal
worldproductorprocess.Itisastepupfromastraightdigitalsimulationasitcanoptimiseintegration,testing,monitoringandmaintenanceoffacilitiessuchassupplychainsorpowerplants.Atwinisparticularlyusefulinworkingoutlifecyclemanagement,modellingintheoryhowaproductmight
behaveovertime,updatingitselfasnecessary.Thetwinemulates,replicates,observesandevaluatesaproductorprocessandhighlightsopportunitiesforchange.
Demandisgrowing.FortuneBusinessInsightsestimatesthatdigitaltwinningwillpropelan82percentincreaseinthemarketforcomputer-assisteddesignandproductlifecyclemanagementsoftware,helpingittoreach$26.4bnby2030.NorthAmericaisexpectedtoaccountforone-thirdofthe
overallmarket.
Whilestillearlydays,EYhighlightstheindustrial
metaverseasthenextphaseindigitaltwintechnology,withanassetrendereddigitallyinvirtualspace.Siemens,aproviderofdigitaltwintechnology,partneredin2022withNvidiato
createanindustrialmetaverse,allowinguserstoseetheircreationsinanimmersivedigitaluniverse.
Collaborationsoftware
Communicationandcollaborationacrossanorganisationbetweenmembersofdifferentunitsisfareasierwith
technology.Atthemostbasiclevel,Slackallowsfordiscussionbetweencolleagues.Thereareseveral
morespecialisedprogrammesforinnovationandidea
management,suchasMiro,BraineetandIdeanote.Itis
worthnotingthatwhiletheseprogramshelphumansto
shareknowledgeandadvanceideas,theydonotgenerateordevelopconceptsthemselves.
Thistypeofknowledgebankingisstillhelpfulifit
allowscompaniestofindhistoricaldataeasily.“Thekeytoinnovationisnotsuccess,”saysRidley.
“Thekeyisthatyoufailveryquicklyandyoulearnfromeveryoneofthoseexperiments.Youwanttokeepevery
failedexperiment—becausethefailedexperimentsaresourcesoflearning.”
Italsohelpstokeeparecordofhowandwhychangesweremadetoproductstoavoidspuriousreversals—andtobe
surethatthedataisaccurate.
Finally,AIcanhelpwithcheckingthatexistingpatentsorregulationsarenotbeinginfringed.
Talentandtruststandinthewayofgreateradoptionofsimulation
KeyimpedimentsforbroadadoptionofAI/ML-basedsimulationversusclassicsimulation(%ofsurveyresponses)
61
47
44
40
36
ClassicAI/ML-based
61
LimitedtrustinAI/ML-basedmethodologies
Lackoftalent/skillLimitedunderstanding
ofthebenefitsof
AI/ML-basedsimulation
3/5
oforganisations
consideralackof
talentandalimitedunderstandingof
thebenefitsasa
criticalimpedimenttowardsadoptionofAI/ML-based
simulation
Source:McKinsey
What’snext?
EvenasAImakesstridesinboostingcapacitytocreate
moreproductsathigherspeed,quantumtechnologiescouldaddnewdimensions.TheUKhasinvestedinthisareafor
adecadeandinJulythegovernmentannouncedfundingof£100mntoestablishquantumhubstopushforwarddevelopment.
Wearestillsomewayfromunderstandingthefull
potentialofquantumcomputingbutitcouldhelpwith
materialanddrugdiscoveries,modellingexistingmaterialsandchemicalprocesses.
Quantumsensors,whichcanbefarmoresensitivethan
regularsensors,arealreadyusedinsomecommercial
applications.Theseincludebrain-scanning,wherequantum
sensorsallowforawiderrangeofdiagnosticenvironments,andgravitysensing,whichcanbeusedtoscanforsubsurfacecomposition,forinstanceintheconstructionindustry.
Electricbatteryresearchershavealreadydeployedquantumsensorstoanalysemicrocurrentsandimproveproduction
yields.
Therearesomeobstructionstowider-scaleapplication,includingthehypersensitivityofquantumsensors,
whichmakesthemdifficulttouseinsomeenvironments,
theirdemandforpowerandtheircurrentcomplexity.
Neverthelesswecouldseedevelopmentsthatallowfor
morewidespreadcommercialusagewithintwotofiveyears,dependingontheapplication.
PremiumMembers
Beyondtheproduct:Whylearningtolisteniskeytoinnovation
DilipBhatia,chiefexperienceofficer,Lenovo
TheFTTechforGrowthForumissupportedby
HCLTechandLenovo,ourpremiummembers,who
helptofundthereports.
Ourmemberssharetheirbusinessperspectiveon
theforumadvisoryboard.Theydiscusstopicsthat
theforumshouldcoverbutthefinaldecisionrests
withtheeditorialdirector.Thereportsarewritten
byaFinancialTimesjournalistandareeditorially
independent.
Members’viewsstandalone.Theyareseparatefrom
theFTandtheFTTechforGrowthForum.
Howcanbusinessesgetbetteratproductinnovation?Itsoundsparadoxical,butthefirstandmostimportantstepistostop
thinkingsomuchaboutproductsandtechnology.Instead,
companiesshouldfocusmoreonunderstandingeverything
aboutthecustomerexperience—andgettingthatrightmeanslearninghowtolisten.
AtLenovo,welistentofeedbackfromacrossthecustomer
journey—throughadvisorycouncils,customerpanelsand
millionsofproduct-ownershipsurveys—andusethistopowerourinnovation.Ourapproachisagile:wezeroinonspecific
groupstoimprovetheirindividualexperienceofourproducts,ratherthancarryingoutmassive,costlyprojectsthatcantakeyearstocomplete.
Whenprofessionalstoldustheylovedthe“sleeknessand
sturdiness”oftheThinkPad,welistenedandbuiltonit.To
dev
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 经销商发展规划和思路
- 国开04041+11653药理学(本)期末复习资料
- 步长制药:山东步长制药股份有限公司2024年第一季度报告
- 山东省青岛市2024-2025学年高三上学期期中物理试卷 含解析
- G机场助航灯光易折易碎支撑杆 跑道下滑天线易折易碎杆
- 抗药感染药课件
- 2024年中级《质量专业理论与实务》核心备考题库(含典型题、重点题)
- 医生与病人知到智慧树章节测试课后答案2024年秋齐齐哈尔医学院
- 化工热力学知到智慧树章节测试课后答案2024年秋曲阜师范大学
- 陕旅版六年级上册英语上册教案全册
- 机场控制性详细规划
- 北京高一上学期期末语文试卷及答案
- 老年人常见病的预防与照护
- 成长赛道职业生涯规划
- 产品外观检验标准通用
- 施工电梯安装(拆卸)安全技术交底
- 《建筑基坑工程监测技术标准》(50497-2019)
- 全国优质课一等奖初中七年级上册数学《直线、射线、线段》课件
- 注塑车间总结
- 鲜肉类产品采购供货服务方案投标方案(技术方案)
- XXX行政办公区B1号楼幕墙专项施工方案
评论
0/150
提交评论