人工智能与研发革命_第1页
人工智能与研发革命_第2页
人工智能与研发革命_第3页
人工智能与研发革命_第4页
人工智能与研发革命_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

FT

AIand

theR&D

revolution

TheFTTechforGrowthForumissupportedby

Foreword

T

hislatestreportfromtheFinancialTimesTechfor

GrowthForumaddressesafundamentalquestion

facingcompaniestoday:howdowefosterinnovationinordertodrivegrowth?

Businessesalreadyknowthatthereturnswhichflowfromusingadvancedtechnologiessuchasartificialintelligence

areconsiderable.Thekeyforleadersisunderstandinghowto

unlockthatpotentialbyoptimisingtheirinvestmentinresearchanddevelopment.

Thisreportdrawsonexperttestimonytooffercompaniesa

strategythatwilltakethemtothecuttingedgeoftechnologyandinnovation.

JonathanDerbyshire

Visittheeditorialhubat

/tech-for-growth-forum

TechforGrowthForumEditorFinancialTimes

AIandthe

R&Drevolution

Howcanthisfast-changingtechnologyhelpprovidersupdateproductsmoreefficientlyandsuccessfullyateachstageofR&D.ByLucyColback

andconsumerproducts,anticipatethatathirdofsales,

worth$30tnoverfiveyears,willcomefromnewproducts.

I

naworldoffast-changingconsumerpreferencesandincreasingchoice,companiesthatwanttostayaheadmustworkcontinuouslytoensurethattheirgoodsandservicessatisfythecustomer.In2023McKinseysaidthatbigindustries,includingautomotive,telecoms

Advancementiskeyandtheleveloffreshfundsflowing

intoresearchanddevelopmentisconsiderable.According

tothelatestUKstatistics,£71bnwasspentonR&Din2022,ofwhich£50bncamefromthebusinesssector.IntheUSthefigureisestimatedtobe$886bnwithbusinessaccountingfor$690bn.

Thereturnfromusingadvancedtechnologiesis

considerable.Lookingatthepharmaindustry,Accenture

estimatesthatscaleduseandredesignedworkflowswill

meanthatmedicinescanbebroughttomarketfouryears

faster,earninganextra$2bnforeachsuccessfuldrug.Costsof$2.6bnto$6.7bncouldalsobescythedbyupto45percent.

Withsuchlargesumsatstake,companieswillhaveto

thinkcarefullyaboutwhereandhowtheyspendtheircashtoreachtheconsumer.

Inapreviousreportwestudiedtheroleoftechnologyinmarketingandhowbusinessescanusetechnologytoolstofosterloyaltywithpersonalisedmessagingandtocreateholisticcross-channelstrategies.

Turningtothefrontendoftheproductcycle,thisreportwillexaminehowtechnologycanhelpprovidersupdate

productsmoreefficientlyandsuccessfullyateachstageofR&D.

Thebusinesscaseforsimulationisshifting,withfastertime-to-marketandreducedproductcost

askeyfuturevaluedrivers

Pastvaluedriversofapplyingsimulationtechniques(%)Futurevaluedrivers(%)

Improvedproductperformance

Reductionofproductcost

Reductionofengineeringcost

Fastertime-to-market

Zeroprotoyping

87

73

73

58

67

Fastertime-to-market

Reductionofproductcost

Improvedproductperformance

Reductionofengineeringcost

Zeroprotoyping

73

72

72

70

65

Source:McKinsey

Wearealltechnologycompanies

Mindsetisanimportantfactorininnovation.Sean

Ammirati,professorofentrepreneurshipatCarnegieMellonUniversity,Pennsylvania,saysanentrepreneurialculture

insidetheR&Dfunctionhelpscompaniestoinnovate—eventhelargeones.Teamswithsuchamindsetaremorelikely

tocomeupwithtransformationalratherthanincrementalproductdevelopments.

Ammirati,whohasfoundedseveralmachine-learning

start-ups,saysmanycompaniesdonotmakethenecessaryinvestmentinadjacentandtransformationalinnovation.Heciteda2012paperbyHarvardBusinessReview,whichstated:“Companiesthatallocated70percentofinnovationactivitytocoreinitiatives,20percenttoadjacentonesand10percenttotransformationalonesoutperformedtheir

peers.”

Technologycompaniesshouldinvestmoreinthesetwo

areas,thesameresearchsaid.Giventoday’subiquityof

technology,AmmiratisaysthateverybusinessshouldthinkofitselfasatechnologycompanywhenitdecidesitsR&D

budget.

Identifyyourtarget

Itisimportanttoidentifywhataproductistryingto

achieveandwhoisthetarget—thismightnotalways

beobvious.Pella,theIowawindowanddoormaker,has

designedamechanismthattreatstheinstallerratherthan

thehomeownerasitscustomer.Basedonobservationsandresponses,Pella’snewwindowiseasytoinstallfromthe

insideratherthantheoutsideofaproperty,reducingtherisktoworkerswhenputtingwindowsintotallbuildings.

TargetsareimportantfortheR&Dprocess,too.This

shouldincludedecidingiftheobjectivesincludecuttingthecostofmaterials,thecostofengineering,timetomarket,

orallthree.Havingthisinmindhelpswithsettingkey

performanceindicatorstoassesswhetheraprocessworks.

ConfidenceinthecapabilitiesofAIandML

isdrivingadoption

‘Accuracyofresults’asacriterionfortoolselection(%ofsurveyresults)

AI/ML-basedsimulationoperationalised

mmNoorverylimitedusageofAI/ML-basedsimulation

20

80

9

91

Accuracyofresults

isacriterionfor

toolselection

(n=70)

Accuracyofresults

isnotacriterion

fortoolselection

(n=30)

Source:McKinsey

Theroleofdata

Customerneedsshouldalwaysbetheinspirationforproductdevelopment.Themoredatathatisavailable,theeasier

thesearetodefine.Dataiscriticaltoanytechnologystrategy.Itcan,forinstance,alertcompaniestowhatcustomersare

seekingandwhatisindemand.

Onlinemarketplaceshaveextensiveaccesstodataaboutpurchasinginformationandshoppingsearcheswhichcan

givethemanadvantageoverthevendorswhousetheirsites.

Asweobservedinourreportontheplatformeconomy,thereisvalueinbrandshostingtheirownwebsitesasa

meanstoretainandinterpretcustomerdata.Thiscan

giveinstantinsightsintomodifyingoraddingtowhattheyoffer.ForexamplethebracompanyLivelyintroduced

straplessbrastoitsrangeafteritfoundthatmanywomenweresearchingforthese.TommyJohn,whichmakesmen’sunderwear,foundthatwomenlikeditsproductstooand

itaddedsecond-skin“boyshorts”,teesandpantsaimedatfemales.

Whencollectingorcompilingdata,itisimportantforittobeclean.Thisisespeciallythecasewhendeployingartificialintelligencesystemswhichareinessencestatisticalmodelsthatfeedondata.“Thismeansyourteamneedstocareaboutdata,”Ammiratisays.“Ifyourteamarebeingsloppywith

howtheyenterdatayou’reactuallycausingdownstreamproblems.”

Increasinglyproductscanbedevelopedfora“segmentofone”usingcustomerinformation.SkincarerangessuchasFentyBeautyofferproductstosuitacustomer’sskintone

usingacombinationofimagerecognitionandmachine

learning.Othercompaniesusecustomer-supplieddata

orinsightsgleanedfrompreviouspurchasestosuggestor

customiseproducts.NikeByYouallowscustomerstocreatetheirowntrainersfromapaletteofstyles,coloursand

designs.

Theco-creationofproductsgoesbeyondpersonalisation,Thisiswherecustomersadvisecompanieswhattheywantbyspecifyingmodificationsbeyondthosegiveninadrop-downlist.Ikeaisamongthegroupsthathaveco-createdproductswithcustomersforseveralyears.

AtasummitonAIhostedbyBloomreach,AzitaMartin,

vice-presidentofAIforretailatNvidia,saidthenextchallengeformanycompanieswouldbeinfulfillinghighlypersonalisedorders—essentiallyforamarketofone—quicklyenoughto

satisfytheconsumer.Shesaidthecorrectforecasting,fasterthroughputindistributioncentres(usingcomputervision,roboticsandsimulation)andlast-miledeliverywereareaswhereAIcouldgiveretailersmoreagility.

‘Ifyourteamarebeing

sloppywithhowthey

enterdatayou’re

actuallycausing

downstreamproblems’

Fromconcepttoreality

Peoplecanstillcomeupwithproductideasindependentlyofdata.TechnologycanhelptoacceleratethesetomarketandAIisapowerfultoolinthatprocess.

WhilehumanoversightwillremainasimportantforR&Dasitisforthecreationofmarketingcontent,generative

AIbasedonlargelanguagemodelswillbeinvaluableasa

“conversationstarter”.Presentedwithanideaorevena

vagueconcept,generativeAIcanhelpwithbrainstormingtohelpdevelopaproduct,undertakemarketresearchtofindiftherearesimilaritems,identifyandanalysecompetitorsandgivethoughtsonhowtocreateadifference.AIcanprovide

manyversionsofaproductandsuggestmodificationstosuitanichethatahumandesignermightnothaveconsidered.

Oncetheproductconcepthasbeenhoned,AIcanhelp

todevisemarket-testingstrategiesaswellasaccelerate

producttestinganddesign.Itcancreateandtestiterationsofaproductataspeedfarfasterthanahuman.Itcansuggestmaterialsandsourcingaswellasmanufacturingprocesses.

Thisisparticularlyhelpfulforstart-upsandsmaller

businesses.ThefounderofSkittenz,acompanythatmakesmittencoverstoenlivenskigloves,usedAItoinvestigatewhichmaterialsandmanufacturingprocessesmightbe

suitabletobringtheproducttomarket.

‘Thisisnotsomething

thatyoucanonlytrain

yourexecutiveson.This

issomethingthat

everybodyinthe

organisationneedsto

beawareof’

SuperchargingwithAI

AIisalsoinvaluableforanestablishedR&Dteam,eventhosethatdeploymoretraditionalsystemsandprograms,which

wewillcoverbelow.TheseareincreasinglyaugmentedbyAI,enablingdesignerstodevisemoreoptionsmorequicklythantheunderlyingsoftwarealone.Ammirati,whohasspecialisedinbothcorporateinnovationandAIintheenterprise,saysthatinthepastthreeyearsthesetwoworkstreamshavemerged

andcannolongerbeconsideredseparateareasofexpertise.

BasedonfindingsfromaforumofR&DleadersinJuly

2024,McKinseysaysthatbothanalyticalandgenerative

AIarelikelytohaveabigeffectoninnovationoutcomes.It

estimatesincreasedmarketfitofupto50percent,productperformanceimprovementsof15to60percent,increased

workplaceproductivityofupto50percentandupto40

percentreductionintimetomarket.Simulationsanddeeplearningsurrogatesinparticularincreasetestingcapabilities.Bainresearchmakessimilarfindings,withengineeringhoursreducedbyuptoafifthandcostfallingbybetween5and30percent.

Bothstressthatstakeholders’buy-inisessentialinthe

digitalisationprocess.Thismightbemoreeasilyachievedinaworkforceifleadersareclearthattech,andAIspecifically,

isalongwayfromreplacingpeople.Amongotherreasons,

thisisduetothecontinued,ifdiminished,incidenceof

hallucinations(whenAIcreatesinformationandpresentsitasfact).“HumanplusAI”willbethefuture,especiallyforR&D.

Ammiratisays:“Therightmentalmodelistothinkof

generativeAIasaco-founder,orwhatisoftendescribedas

‘humanintheloopAI’.Sothinkofitmorelikeabrainstormingbuddy,morelikesomeonewhoautomatesfirstdraftsthan

doesalltheworkforyou.”

WhileAIwillnottakeyourjob,hesays,companiesusingthetoolwillbe“incrediblydisruptive”tothosewhoarenot.“Thisisnotsomethingthatyoucanonlytrainyourexecutiveson.

Thisissomethingthateverybodyintheorganisationneedstobeawareof.”Tokeepupwiththecompetition,nevermindstayahead,businessleadersmusteducatetheirworkforceinhowtouseAI.

Thisdoesnotnecessarilymeanteachingprompt

engineering,whichAmmiratibelieveswillbecomeobsoleteasinterfaceschange.IndeedanewinterfaceisalreadyhereintheformofAIagents.TheseLLM-basedAIappscansummonthehelpoftoolsanddataandsoarenotboundbytheconstraintsofthemostrecentupdate.Overtimetheylearnuser

preferences,retainconversationsforcontextandcanaccessanddeployotherprogramsandinformationautonomouslyinresponsetouserrequests,optimisingworkflowsandcreatingsubtasks.

ToomanybusinessesarenotreadytoharnessAIeffectively.TheStateofAI2024,aglobalsurveyof300seniorexecutivesbySearce,themoderntechnologyconsultant,foundthatwhileallUKandUSrespondentswereusingorplanningtouseAI,

only14percentofcompanieshadmanagedtoscalebeyondthepilotstage.

Impedimentsincludedlackoftalent,especiallyforUK

respondents,whichsuggeststhosecompaniesthatarequicktoinvestineducatingtheircurrentworkforcewillhaveanadvantage.Badlymanageddataandpoorlyprioritiseduseswerefurtherbarrierstosuccessfuladoption.

Despitethehurdles,adoptionisnolongeroptional.For

thosethatarestillnotconvinced,Ammiratisayswehave

reacheda“generaltechnologyinflectionpoint”.Thinkofitassimilartowhentheinternetarrived.“Thebusinesseswhosaidno,we’rejustgoingtoavoidthatinternetthing—mostofthem,unfortunately,arenotaround.”

ClassicsimulationuseissignificantlyaheadofAl-andML-basedsimulationuse

Companies’usesofclassicalvsAl/MLsimulationtechniquesbytechnologymaturitylevel(%ofcompanies)

None

Mostlyproofofconceptsorpilots

Useofhighlymaturevirtualengineeringtechnologiesatscale

10x

morecompaniesuseclassicsimulationcomparedtoAl/ML-basedsimulationatahighmaturitylevel

1

1

48

51

34

61

5

2/3

organisationsalreadyuseAI/MLfor

simulations

Classicalsimulation

techniques

(egMBS,FEA,CFD)

AI/ML-basedsimulation techniques(egneuralnetwork,deeplearning)

Source:McKinsey

AutomotivepullsawayastheleadingindustrytoputAlandMLtouse

Al/MLusagebyindustry(%)

Simulationusers

withinautomotiveare1.6xmore

likelytouse

Al/ML-basedsimulationscomparedtomachinery

59

58

50

47

76

Automotive

(n=42)

Aerospace

anddefence

(n=16)

Basicmaterials

(n=27)

Medicaldevices

(n=19)

Machineryand

fabricatedmetals

(n=18)

Source:McKinsey

TechnologiesavailableforR&D

StepsintheR&DprocesssuchastestingandpredictivemodellingincreasinglytakeadvantageofAI,includingmachinelearningandstatisticalmodelling.Theseareenabledatgreaterspeedandscalebytheincreased

processingpowerofcloudcomputing.Whilethisisnotareplacementforexpertoversight,GenAIprovidesan

intuitiveinterfaceforthosewhomaynothavethetechnicaltrainingthatwasonceessentialevenforearlyproduct

development.Thetechnologiesinclude:

MarketResearch

Digitallydistributedmarketsurveys,suchasthoseofferedbySurveyMonkey,GoogleFormsandTypeformtonamejustafew,offerhugereachandenhancedanalytics.

Design

CAD-CAMsoftwaresuchasthatprovidedbyAutodesk,

SiemensandTrimbleisusedfordesigninfieldssuchas

engineering,architectureandmanufacturing.ManyoftheprogramsincorporateAIwhichquicklyprovidesagreater

numberofalternativedesigns.So-calledgenerativedesigndeploysAIalgorithmsderivedbymachinelearning,whichcancomeupwithdesignsoptimisedfordifferentparameterssuchasmaterialeconomiesorstrength.Providedthe

engineerspecifiesminimumrequirementsandconstraintssuchasmanufacturingprocess,loadsandflexibility,the

systemcanoffermanyvariations,someofwhicharelikelytobenovel.

Prototyping

Thistoo“willnowalmostalwaysstartinthedigital

environment”,saysMarkRidley,aformerchieftechnologyofficeroftheFinancialTimeswhoisnowatechnology

consultant.Puredigitalprototyping,hesays,canmassivelyreducecost,whichwillallowmanymoreattempts.Machine-learningmodelsfacilitatedbycloudcapacityhaveenabledmoredigitalexperimentationintheR&Dprocess.Cloud

computingmeanscompaniesnolongerneedbigbudgets

tobuyin-houseserversforcomplexcomputations.“The

technologyofthecloudallowedforreallysignificant

innovation...becauseitprovideddemocratisedtechnology,whichcouldthenbeusedbysmallentrepreneurialteams.”

Ridleyadds:“Thebeautyhereisthatwiththeincreaseincomputationalpower[and]theavailabilityofsoftwaretodothesethings,designerscannowaugmentmoretraditional

modelslikecomputationalfluiddynamicswithML-basedgenerativedesign.”

‘Youwanttokeep

everyfailed

experiment—because

thefailedexperiments

aresourcesoflearning’

Simulations

Theseareincreasinglypopularfortestingmarketing

strategies,suchasdecidingwhichwordingbesttargetsthecustomerandwhichcommunicationsmediumtochoose.

SimulationsuseA/Btesting(comparingdifferentversionsofastrategy).Theyassumethataproductisalreadyviableandthatthesalesperformancewillbeaffectedbymarketingratherthanhowtheproductisdesignedandperforms.

Simulationscanalsobeusedforproductdevelopment,

testingforvariationsinmaterialsanddesign—oftenusing

thesamesoftwareasthatusedtodesigntheproduct.

EngineeringsoftwarefromproviderssuchasAnsysand

Matlabenablesdesignerstorenderobjectsvirtuallyand

simulatesystemsinwhichtotestandanalyseaspectsoftheirbehaviourindifferentenvironments,forinstancetheirfluidandthermaldynamics.Thevalueinsuchsoftwareliesin

beingabletotestwithoutaphysicalprototype.

Understandingmarketreceptivenesstotheproductisthenextstep.Whileadjacenttomarketing,thisislessbasedontestingastrategyandmoredesignedtodetermineviability.Modellingsoftwarecanhelpinareassuchascomparing

pricingandperformanceagainstcompetitors.Itcanalso

examinetheeffectofdifferenteconomicenvironmentsandcompetitoractions.Itiseasiertotestmaterialordesign

behaviourinasimulationthanitistotrytoassesshumanbehaviour,whichissomuchmoreunpredictable.

Whilesimulationscanbeaprocessingburden,augmentedcapacitycancomefromcloudcomputing.

3Dprinting

Oncesimulationsandtestshaverunsuccessfullythereis

stillmorethatcanbedonewithoutnecessarilyinvestingintheactualproduct.Ridleysaysprocessesusedtorequire

drawingsfollowedbyclaymodelling.Digitalisationhas

significantlyloweredthebarrierstoproduction.“Theclaymodelrequiresartistryanddeepexpertise.Andwhatwe’reseeingnowisthatitiseasiertobuypatternsandcheap

technologyofftheshelfonacreditcard.Thatenablesmoreusersandsmallgroupstodotheinnovationthemselves.”

GenAIinterfacingwith3Dprintingmighteventually

allowacreatortodiscusstheattributesitwantsfroma

givenproduct,Ridleysays.Theymightforinstanceaskthecomputertocomeupwithvariantsofamopthatsimplifyaspectssuchascleaningintocorners,rinsingorapplyingdetergent.

Toproduceinjection-mouldedplasticscomponents,

normallyrequiringexpensiveandspecialisedmachinery,

Boschhasdevelopedadvanced3DprintingwithAI

algorithms.Thesecanadjustsubstrateinputs,heatand

pressureinrealtime,ensuringthatprototypequalityisasgoodastheendproduct.Thisalsoallowsforsmallbatch

productionbeforeinvestmentinlarge-scalefacilities.

SeparatelyBoschhasdevelopedceramic3Dprintingwhichmodelsthedifferentshrinkagesexperiencedwhenanobjectiskiln-fired.

Digitaltwinning

Adigitaltwinisavirtualmodelofaplannedoractualreal

worldproductorprocess.Itisastepupfromastraightdigitalsimulationasitcanoptimiseintegration,testing,monitoringandmaintenanceoffacilitiessuchassupplychainsorpowerplants.Atwinisparticularlyusefulinworkingoutlifecyclemanagement,modellingintheoryhowaproductmight

behaveovertime,updatingitselfasnecessary.Thetwinemulates,replicates,observesandevaluatesaproductorprocessandhighlightsopportunitiesforchange.

Demandisgrowing.FortuneBusinessInsightsestimatesthatdigitaltwinningwillpropelan82percentincreaseinthemarketforcomputer-assisteddesignandproductlifecyclemanagementsoftware,helpingittoreach$26.4bnby2030.NorthAmericaisexpectedtoaccountforone-thirdofthe

overallmarket.

Whilestillearlydays,EYhighlightstheindustrial

metaverseasthenextphaseindigitaltwintechnology,withanassetrendereddigitallyinvirtualspace.Siemens,aproviderofdigitaltwintechnology,partneredin2022withNvidiato

createanindustrialmetaverse,allowinguserstoseetheircreationsinanimmersivedigitaluniverse.

Collaborationsoftware

Communicationandcollaborationacrossanorganisationbetweenmembersofdifferentunitsisfareasierwith

technology.Atthemostbasiclevel,Slackallowsfordiscussionbetweencolleagues.Thereareseveral

morespecialisedprogrammesforinnovationandidea

management,suchasMiro,BraineetandIdeanote.Itis

worthnotingthatwhiletheseprogramshelphumansto

shareknowledgeandadvanceideas,theydonotgenerateordevelopconceptsthemselves.

Thistypeofknowledgebankingisstillhelpfulifit

allowscompaniestofindhistoricaldataeasily.“Thekeytoinnovationisnotsuccess,”saysRidley.

“Thekeyisthatyoufailveryquicklyandyoulearnfromeveryoneofthoseexperiments.Youwanttokeepevery

failedexperiment—becausethefailedexperimentsaresourcesoflearning.”

Italsohelpstokeeparecordofhowandwhychangesweremadetoproductstoavoidspuriousreversals—andtobe

surethatthedataisaccurate.

Finally,AIcanhelpwithcheckingthatexistingpatentsorregulationsarenotbeinginfringed.

Talentandtruststandinthewayofgreateradoptionofsimulation

KeyimpedimentsforbroadadoptionofAI/ML-basedsimulationversusclassicsimulation(%ofsurveyresponses)

61

47

44

40

36

ClassicAI/ML-based

61

LimitedtrustinAI/ML-basedmethodologies

Lackoftalent/skillLimitedunderstanding

ofthebenefitsof

AI/ML-basedsimulation

3/5

oforganisations

consideralackof

talentandalimitedunderstandingof

thebenefitsasa

criticalimpedimenttowardsadoptionofAI/ML-based

simulation

Source:McKinsey

What’snext?

EvenasAImakesstridesinboostingcapacitytocreate

moreproductsathigherspeed,quantumtechnologiescouldaddnewdimensions.TheUKhasinvestedinthisareafor

adecadeandinJulythegovernmentannouncedfundingof£100mntoestablishquantumhubstopushforwarddevelopment.

Wearestillsomewayfromunderstandingthefull

potentialofquantumcomputingbutitcouldhelpwith

materialanddrugdiscoveries,modellingexistingmaterialsandchemicalprocesses.

Quantumsensors,whichcanbefarmoresensitivethan

regularsensors,arealreadyusedinsomecommercial

applications.Theseincludebrain-scanning,wherequantum

sensorsallowforawiderrangeofdiagnosticenvironments,andgravitysensing,whichcanbeusedtoscanforsubsurfacecomposition,forinstanceintheconstructionindustry.

Electricbatteryresearchershavealreadydeployedquantumsensorstoanalysemicrocurrentsandimproveproduction

yields.

Therearesomeobstructionstowider-scaleapplication,includingthehypersensitivityofquantumsensors,

whichmakesthemdifficulttouseinsomeenvironments,

theirdemandforpowerandtheircurrentcomplexity.

Neverthelesswecouldseedevelopmentsthatallowfor

morewidespreadcommercialusagewithintwotofiveyears,dependingontheapplication.

PremiumMembers

Beyondtheproduct:Whylearningtolisteniskeytoinnovation

DilipBhatia,chiefexperienceofficer,Lenovo

TheFTTechforGrowthForumissupportedby

HCLTechandLenovo,ourpremiummembers,who

helptofundthereports.

Ourmemberssharetheirbusinessperspectiveon

theforumadvisoryboard.Theydiscusstopicsthat

theforumshouldcoverbutthefinaldecisionrests

withtheeditorialdirector.Thereportsarewritten

byaFinancialTimesjournalistandareeditorially

independent.

Members’viewsstandalone.Theyareseparatefrom

theFTandtheFTTechforGrowthForum.

Howcanbusinessesgetbetteratproductinnovation?Itsoundsparadoxical,butthefirstandmostimportantstepistostop

thinkingsomuchaboutproductsandtechnology.Instead,

companiesshouldfocusmoreonunderstandingeverything

aboutthecustomerexperience—andgettingthatrightmeanslearninghowtolisten.

AtLenovo,welistentofeedbackfromacrossthecustomer

journey—throughadvisorycouncils,customerpanelsand

millionsofproduct-ownershipsurveys—andusethistopowerourinnovation.Ourapproachisagile:wezeroinonspecific

groupstoimprovetheirindividualexperienceofourproducts,ratherthancarryingoutmassive,costlyprojectsthatcantakeyearstocomplete.

Whenprofessionalstoldustheylovedthe“sleeknessand

sturdiness”oftheThinkPad,welistenedandbuiltonit.To

dev

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论