版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届四川省绿然国际学校高三第二次诊断性检测数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,是两条不重合的直线,是一个平面,则下列命题中正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则2.是的()条件A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要3.的展开式中的系数为()A.-30 B.-40 C.40 D.504.在三棱锥中,,,则三棱锥外接球的表面积是()A. B. C. D.5.已知集合,,则集合子集的个数为()A. B. C. D.6.复数的实部与虚部相等,其中为虚部单位,则实数()A.3 B. C. D.7.已知,则()A. B. C. D.8.已知函数的图像上有且仅有四个不同的点关于直线的对称点在的图像上,则实数的取值范围是()A. B. C. D.9.已知,满足,且的最大值是最小值的4倍,则的值是()A.4 B. C. D.10.已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为()A. B. C. D.11.若各项均为正数的等比数列满足,则公比()A.1 B.2 C.3 D.412.古希腊数学家毕达哥拉斯在公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个“完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28恰好在同一组的概率为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某中学数学竞赛培训班共有10人,分为甲、乙两个小组,在一次阶段测试中两个小组成绩的茎叶图如图所示,若甲组5名同学成绩的平均数为81,乙组5名同学成绩的中位数为73,则x-y的值为________.14.已知向量=(-4,3),=(6,m),且,则m=__________.15.(5分)已知,且,则的值是____________.16.一个算法的伪代码如图所示,执行此算法,最后输出的T的值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,判断在上的单调性并加以证明;(2)若,,求的取值范围.18.(12分)已知函数,.(1)若对于任意实数,恒成立,求实数的范围;(2)当时,是否存在实数,使曲线:在点处的切线与轴垂直?若存在,求出的值;若不存在,说明理由.19.(12分)在四棱锥中,底面是平行四边形,底面.(1)证明:;(2)求二面角的正弦值.20.(12分)在直角坐标系中,已知直线的直角坐标方程为,曲线的参数方程为(为参数),以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线和直线的极坐标方程;(2)已知直线与曲线、相交于异于极点的点,若的极径分别为,求的值.21.(12分)设函数().(1)讨论函数的单调性;(2)若关于x的方程有唯一的实数解,求a的取值范围.22.(10分)某网络商城在年月日开展“庆元旦”活动,当天各店铺销售额破十亿,为了提高各店铺销售的积极性,采用摇号抽奖的方式,抽取了家店铺进行红包奖励.如图是抽取的家店铺元旦当天的销售额(单位:千元)的频率分布直方图.(1)求抽取的这家店铺,元旦当天销售额的平均值;(2)估计抽取的家店铺中元旦当天销售额不低于元的有多少家;(3)为了了解抽取的各店铺的销售方案,销售额在和的店铺中共抽取两家店铺进行销售研究,求抽取的店铺销售额在中的个数的分布列和数学期望.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
利用空间位置关系的判断及性质定理进行判断.【详解】解:选项A中直线,还可能相交或异面,选项B中,还可能异面,选项C,由条件可得或.故选:D.【点睛】本题主要考查直线与平面平行、垂直的性质与判定等基础知识;考查空间想象能力、推理论证能力,属于基础题.2、B【解析】
利用充分条件、必要条件与集合包含关系之间的等价关系,即可得出。【详解】设对应的集合是,由解得且对应的集合是,所以,故是的必要不充分条件,故选B。【点睛】本题主要考查充分条件、必要条件的判断方法——集合关系法。设,如果,则是的充分条件;如果B则是的充分不必要条件;如果,则是的必要条件;如果,则是的必要不充分条件。3、C【解析】
先写出的通项公式,再根据的产生过程,即可求得.【详解】对二项式,其通项公式为的展开式中的系数是展开式中的系数与的系数之和.令,可得的系数为;令,可得的系数为;故的展开式中的系数为.故选:C.【点睛】本题考查二项展开式中某一项系数的求解,关键是对通项公式的熟练使用,属基础题.4、B【解析】
取的中点,连接、,推导出,设设球心为,和的中心分别为、,可得出平面,平面,利用勾股定理计算出球的半径,再利用球体的表面积公式可得出结果.【详解】取的中点,连接、,由和都是正三角形,得,,则,则,由勾股定理的逆定理,得.设球心为,和的中心分别为、.由球的性质可知:平面,平面,又,由勾股定理得.所以外接球半径为.所以外接球的表面积为.故选:B.【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,找出球心的位置,并以此计算出球的半径长,考查推理能力与计算能力,属于中等题.5、B【解析】
首先求出,再根据含有个元素的集合有个子集,计算可得.【详解】解:,,,子集的个数为.故选:.【点睛】考查列举法、描述法的定义,以及交集的运算,集合子集个数的计算公式,属于基础题.6、B【解析】
利用乘法运算化简复数即可得到答案.【详解】由已知,,所以,解得.故选:B【点睛】本题考查复数的概念及复数的乘法运算,考查学生的基本计算能力,是一道容易题.7、C【解析】
利用诱导公式得,,再利用倍角公式,即可得答案.【详解】由可得,∴,∴.故选:C.【点睛】本题考查诱导公式、倍角公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意三角函数的符号.8、A【解析】
可将问题转化,求直线关于直线的对称直线,再分别讨论两函数的增减性,结合函数图像,分析临界点,进一步确定的取值范围即可【详解】可求得直线关于直线的对称直线为,当时,,,当时,,则当时,,单减,当时,,单增;当时,,,当,,当时,单减,当时,单增;根据题意画出函数大致图像,如图:当与()相切时,得,解得;当与()相切时,满足,解得,结合图像可知,即,故选:A【点睛】本题考查数形结合思想求解函数交点问题,导数研究函数增减性,找准临界是解题的关键,属于中档题9、D【解析】试题分析:先画出可行域如图:由,得,由,得,当直线过点时,目标函数取得最大值,最大值为3;当直线过点时,目标函数取得最小值,最小值为3a;由条件得,所以,故选D.考点:线性规划.10、C【解析】
如图所示,当点C位于垂直于面的直径端点时,三棱锥的体积最大,设球的半径为,此时,故,则球的表面积为,故选C.考点:外接球表面积和椎体的体积.11、C【解析】
由正项等比数列满足,即,又,即,运算即可得解.【详解】解:因为,所以,又,所以,又,解得.故选:C.【点睛】本题考查了等比数列基本量的求法,属基础题.12、B【解析】
推导出基本事件总数,6和28恰好在同一组包含的基本事件个数,由此能求出6和28恰好在同一组的概率.【详解】解:将五个“完全数”6,28,496,8128,33550336,随机分为两组,一组2个,另一组3个,基本事件总数,6和28恰好在同一组包含的基本事件个数,∴6和28恰好在同一组的概率.故选:B.【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据茎叶图中的数据,结合平均数与中位数的概念,求出x、y的值.【详解】根据茎叶图中的数据,得:甲班5名同学成绩的平均数为,解得;又乙班5名同学的中位数为73,则;.故答案为:.【点睛】本题考查茎叶图及根据茎叶图计算中位数、平均数,考查数据分析能力,属于简单题.14、8.【解析】
利用转化得到加以计算,得到.【详解】向量则.【点睛】本题考查平面向量的坐标运算、平面向量的数量积、平面向量的垂直以及转化与化归思想的应用.属于容易题.15、【解析】
由于,且,则,得,则.16、【解析】
由程序中的变量、各语句的作用,结合流程图所给的顺序,模拟程序的运行,即可得到答案.【详解】根据题中的程序框图可得:,执行循环体,,不满足条件,执行循环体,,此时,满足条件,退出循环,输出的值为.故答案为:【点睛】本题主要考查了程序和算法,依次写出每次循环得到的,的值是解题的关键,属于基本知识的考查.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)在为增函数;证明见解析(2)【解析】
(1)令,求出,可推得,故在为增函数;(2)令,则,由此利用分类讨论思想和导数性质求出实数的取值范围.【详解】(1)当时,.记,则,当时,,.所以,所以在单调递增,所以.因为,所以,所以在为增函数.(2)由题意,得,记,则,令,则,当时,,,所以,所以在为增函数,即在单调递增,所以.①当,,恒成立,所以为增函数,即在单调递增,又,所以,所以在为增函数,所以所以满足题意.②当,,令,,因为,所以,故在单调递增,故,即.故,又在单调递增,由零点存在性定理知,存在唯一实数,,当时,,单调递减,即单调递减,所以,此时在为减函数,所以,不合题意,应舍去.综上所述,的取值范围是.【点睛】本题主要考查了导数的综合应用,利用导数研究函数的单调性、最值和零点及不等式恒成立等问题,考查化归与转化思想、分类与整合思想、函数与方程思想,考查了学生的逻辑推理和运算求解能力,属于难题.18、(1);(2)不存在实数,使曲线在点处的切线与轴垂直.【解析】
(1)分类时,恒成立,时,分离参数为,引入新函数,利用导数求得函数最值即可;(2),导出导函数,问题转化为在上有解.再用导数研究的性质可得.【详解】解:(1)因为当时,恒成立,所以,若,为任意实数,恒成立.若,恒成立,即当时,,设,,当时,,则在上单调递增,当时,,则在上单调递减,所以当时,取得最大值.,所以,要使时,恒成立,的取值范围为.(2)由题意,曲线为:.令,所以,设,则,当时,,故在上为增函数,因此在区间上的最小值,所以,当时,,,所以,曲线在点处的切线与轴垂直等价于方程在上有实数解.而,即方程无实数解.故不存在实数,使曲线在点处的切线与轴垂直.【点睛】本题考查不等式恒成立,考查用导数的几何意义,由导数几何把问题进行转化是解题关键.本题属于困难题.19、(1)见解析(2)【解析】
(1)利用正弦定理求得,由此得到,结合证得平面,由此证得.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值,再转化为正弦值.【详解】(1)在中,由正弦定理可得:,,底面,平面,;(2)以为坐标原点建立如图所示的空间直角坐标系,,设平面的法向量为,由可得:,令,则,设平面的法向量为,由可得:,令,则,设二面角的平面角为,由图可知为钝角,则,,故二面角的正弦值为.【点睛】本小题主要考查线线垂直的证明,考查空间向量法求二面角,考查空间想象能力和逻辑推理能力,属于中档题.20、(1),.(2)【解析】
(1)先将曲线的参数方程化为直角坐标方程,即可代入公式化为极坐标;根据直线的直角坐标方程,求得倾斜角,即可得极坐标方程.(2)将直线的极坐标方程代入曲线、可得,进而代入可得的值.【详解】(1)曲线的参数方程为(为参数),消去得,把,代入得,从而得的极坐标方程为,∵直线的直角坐标方程为,其倾斜角为,∴直线的极坐标方程为.(2)将代入曲线的极坐标方程分别得到,则.【点睛】本题考查了参数方程化为普通方程的方法,直角坐标方程化为极坐标方程的方法,极坐标的几何意义,属于中档题.21、(1)当时,递增区间时,无递减区间,当时,递增区间时,递减区间时;(2)或.【解析】
(1)求出,对分类讨论,先考虑(或)恒成立的范围,并以此作为的分类标准,若不恒成立,求解,即可得出结论;(2)有解,即,令,转化求函数只有一个实数解,根据(1)中的结论,即可求解.【详解】(1),当时,恒成立,当时,,综上,当时,递增区间时,无递减区间,当时,递增区间时,递减区间时;(2),令,原方程只有一个解,只需只有一个解,即求只有一个零点时,的取值范围,由(1)得当时,在单调递增,且,函数只有一个零点,原方程只有一个解,当时,由(1)得在出取得极小值,也是最小值,当时,,此时函数只有一个零点,原方程只有一个解,当且递增区间时,递减区间时;,当,有两个零点,即原方程有两个解,不合题意,所以的取值范围是或.【点睛】本题考查导数的综合应用,涉及到单调性、零点、极值最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年广东省三宜集团有限公司招聘笔试参考题库含答案解析
- 2025年中国石化中原石化分公司招聘笔试参考题库含答案解析
- 《慧享未来培训》课件
- 2025icp许可咨询及互联网企业市场拓展与业务发展合同3篇
- 国家电网限公司总部招聘2025年高校应届毕业生【7人】事业单位高频重点提升(共500题)附带答案详解
- 四川资阳市雁江区属事业单位招聘高频重点提升(共500题)附带答案详解
- 四川省浦江事业单位招聘高频重点提升(共500题)附带答案详解
- 四川德阳旌阳区从服务基层项目人员中招聘事业单位工作人员5人高频重点提升(共500题)附带答案详解
- 嘉兴市平湖市卫生计生系统赴温州医科大学招考事业编制卫生专业高频重点提升(共500题)附带答案详解
- 厦门市思明区劳动保障监察大队补充招考1名非在编工作人员高频重点提升(共500题)附带答案详解
- 建筑史智慧树知到期末考试答案2024年
- JTG D60-2015 公路桥涵设计通用规范
- 2023-2024年家政服务员职业技能培训考试题库(含答案)
- 企业廉政教育培训课件
- 2023年(中级)电工职业技能鉴定考试题库(必刷500题)
- 藏历新年文化活动的工作方案
- 果酒酿造完整
- 第4章-理想气体的热力过程
- 生涯发展展示
- 国内民用船舶修理价格表
- 江苏盐城东台市小学数学五年级上册期末测试卷含答案
评论
0/150
提交评论