版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届云南省玉溪市澄江县一中高三第三次模拟考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点是双曲线上一点,若点到双曲线的两条渐近线的距离之积为,则双曲线的离心率为()A. B. C. D.22.已知函数的图像与一条平行于轴的直线有两个交点,其横坐标分别为,则()A. B. C. D.3.若函数恰有3个零点,则实数的取值范围是()A. B. C. D.4.为了贯彻落实党中央精准扶贫决策,某市将其低收入家庭的基本情况经过统计绘制如图,其中各项统计不重复.若该市老年低收入家庭共有900户,则下列说法错误的是()A.该市总有15000户低收入家庭B.在该市从业人员中,低收入家庭共有1800户C.在该市无业人员中,低收入家庭有4350户D.在该市大于18岁在读学生中,低收入家庭有800户5.已知函数,则下列结论错误的是()A.函数的最小正周期为πB.函数的图象关于点对称C.函数在上单调递增D.函数的图象可由的图象向左平移个单位长度得到6.已知函数是上的偶函数,且当时,函数是单调递减函数,则,,的大小关系是()A. B.C. D.7.是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的,且球的表面积也是圆柱表面积的”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为,则该圆柱的内切球体积为()A. B. C. D.9.关于函数,有下列三个结论:①是的一个周期;②在上单调递增;③的值域为.则上述结论中,正确的个数为()A. B. C. D.10.是平面上的一定点,是平面上不共线的三点,动点满足,,则动点的轨迹一定经过的()A.重心 B.垂心 C.外心 D.内心11.设复数满足,在复平面内对应的点的坐标为则()A. B.C. D.12.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是()A. B. C. D.8二、填空题:本题共4小题,每小题5分,共20分。13.设向量,,且,则_________.14.在四棱锥中,是边长为的正三角形,为矩形,,.若四棱锥的顶点均在球的球面上,则球的表面积为_____.15.已知变量(m>0),且,若恒成立,则m的最大值________.16.实数,满足约束条件,则的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的内角,,的对边分别为,,,.(1)若,证明:.(2)若,,求的面积.18.(12分)已知数列满足,,数列满足.(Ⅰ)求证数列是等比数列;(Ⅱ)求数列的前项和.19.(12分)已知函数(),是的导数.(1)当时,令,为的导数.证明:在区间存在唯一的极小值点;(2)已知函数在上单调递减,求的取值范围.20.(12分)已知函数,其中为实常数.(1)若存在,使得在区间内单调递减,求的取值范围;(2)当时,设直线与函数的图象相交于不同的两点,,证明:.21.(12分)如图,四棱锥中,四边形是矩形,,,为正三角形,且平面平面,、分别为、的中点.(1)证明:平面;(2)求几何体的体积.22.(10分)如图,在棱长为的正方形中,,分别为,边上的中点,现以为折痕将点旋转至点的位置,使得为直二面角.(1)证明:;(2)求与面所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
设点的坐标为,代入椭圆方程可得,然后分别求出点到两条渐近线的距离,由距离之积为,并结合,可得到的齐次方程,进而可求出离心率的值.【详解】设点的坐标为,有,得.双曲线的两条渐近线方程为和,则点到双曲线的两条渐近线的距离之积为,所以,则,即,故,即,所以.故选:A.【点睛】本题考查双曲线的离心率,构造的齐次方程是解决本题的关键,属于中档题.2、A【解析】
画出函数的图像,函数对称轴方程为,由图可得与关于对称,即得解.【详解】函数的图像如图,对称轴方程为,,又,由图可得与关于对称,故选:A【点睛】本题考查了正弦型函数的对称性,考查了学生综合分析,数形结合,数学运算的能力,属于中档题.3、B【解析】
求导函数,求出函数的极值,利用函数恰有三个零点,即可求实数的取值范围.【详解】函数的导数为,令,则或,上单调递减,上单调递增,所以0或是函数y的极值点,函数的极值为:,函数恰有三个零点,则实数的取值范围是:.故选B.【点睛】该题考查的是有关结合函数零点个数,来确定参数的取值范围的问题,在解题的过程中,注意应用导数研究函数图象的走向,利用数形结合思想,转化为函数图象间交点个数的问题,难度不大.4、D【解析】
根据给出的统计图表,对选项进行逐一判断,即可得到正确答案.【详解】解:由题意知,该市老年低收入家庭共有900户,所占比例为6%,则该市总有低收入家庭900÷6%=15000(户),A正确,该市从业人员中,低收入家庭共有15000×12%=1800(户),B正确,该市无业人员中,低收入家庭有15000×29%%=4350(户),C正确,该市大于18岁在读学生中,低收入家庭有15000×4%=600(户),D错误.故选:D.【点睛】本题主要考查对统计图表的认识和分析,这类题要认真分析图表的内容,读懂图表反映出的信息是解题的关键,属于基础题.5、D【解析】
由可判断选项A;当时,可判断选项B;利用整体换元法可判断选项C;可判断选项D.【详解】由题知,最小正周期,所以A正确;当时,,所以B正确;当时,,所以C正确;由的图象向左平移个单位,得,所以D错误.故选:D.【点睛】本题考查余弦型函数的性质,涉及到周期性、对称性、单调性以及图象变换后的解析式等知识,是一道中档题.6、D【解析】
利用对数函数的单调性可得,再根据的单调性和奇偶性可得正确的选项.【详解】因为,,故.又,故.因为当时,函数是单调递减函数,所以.因为为偶函数,故,所以.故选:D.【点睛】本题考查抽象函数的奇偶性、单调性以及对数函数的单调性在大小比较中的应用,比较大小时注意选择合适的中间数来传递不等关系,本题属于中档题.7、B【解析】
分别判断充分性和必要性得到答案.【详解】所以(逆否命题)必要性成立当,不充分故是必要不充分条件,答案选B【点睛】本题考查了充分必要条件,属于简单题.8、D【解析】
设圆柱的底面半径为,则其母线长为,由圆柱的表面积求出,代入圆柱的体积公式求出其体积,结合题中的结论即可求出该圆柱的内切球体积.【详解】设圆柱的底面半径为,则其母线长为,因为圆柱的表面积公式为,所以,解得,因为圆柱的体积公式为,所以,由题知,圆柱内切球的体积是圆柱体积的,所以所求圆柱内切球的体积为.故选:D【点睛】本题考查圆柱的轴截面及表面积和体积公式;考查运算求解能力;熟练掌握圆柱的表面积和体积公式是求解本题的关键;属于中档题.9、B【解析】
利用三角函数的性质,逐个判断即可求出.【详解】①因为,所以是的一个周期,①正确;②因为,,所以在上不单调递增,②错误;③因为,所以是偶函数,又是的一个周期,所以可以只考虑时,的值域.当时,,在上单调递增,所以,的值域为,③错误;综上,正确的个数只有一个,故选B.【点睛】本题主要考查三角函数的性质应用.10、B【解析】
解出,计算并化简可得出结论.【详解】λ(),∴,∴,即点P在BC边的高上,即点P的轨迹经过△ABC的垂心.故选B.【点睛】本题考查了平面向量的数量积运算在几何中的应用,根据条件中的角计算是关键.11、B【解析】
根据共轭复数定义及复数模的求法,代入化简即可求解.【详解】在复平面内对应的点的坐标为,则,,∵,代入可得,解得.故选:B.【点睛】本题考查复数对应点坐标的几何意义,复数模的求法及共轭复数的概念,属于基础题.12、A【解析】
由三视图还原出原几何体,得出几何体的结构特征,然后计算体积.【详解】由三视图知原几何体是一个四棱锥,四棱锥底面是边长为2的正方形,高为2,直观图如图所示,.故选:A.【点睛】本题考查三视图,考查棱锥的体积公式,掌握基本几何体的三视图是解题关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据向量的数量积的计算,以及向量的平方,简单计算,可得结果.【详解】由题可知:且由所以故答案为:【点睛】本题考查向量的坐标计算,主要考查计算,属基础题.14、【解析】
做中点,的中点,连接,由已知条件可求出,运用余弦定理可求,从而在平面中建立坐标系,则以及的外接圆圆心为和长方形的外接圆圆心为在该平面坐标系的坐标可求,通过球心满足,即可求出的坐标,从而可求球的半径,进而能求出球的表面积.【详解】解:如图做中点,的中点,连接,由题意知,则设的外接圆圆心为,则在直线上且设长方形的外接圆圆心为,则在上且.设外接球的球心为在中,由余弦定理可知,.在平面中,以为坐标原点,以所在直线为轴,以过点垂直于轴的直线为轴,如图建立坐标系,由题意知,在平面中且设,则,因为,所以解得.则所以球的表面积为.故答案为:.【点睛】本题考查了几何体外接球的问题,考查了球的表面积.关于几何体的外接球的做题思路有:一是通过将几何体补充到长方体中,将几何体的外接球等同于长方体的外接球,求出体对角线即为直径,但这种方法适用性较差;二是通过球的球心与各面外接圆圆心的连线与该平面垂直,设半径列方程求解;三是通过空间、平面坐标系进行求解.15、【解析】
在不等式两边同时取对数,然后构造函数f(x)=,求函数的导数,研究函数的单调性即可得到结论.【详解】不等式两边同时取对数得,即x2lnx1<x1lnx2,又即成立,设f(x)=,x∈(0,m),∵x1<x2,f(x1)<f(x2),则函数f(x)在(0,m)上为增函数,函数的导数,由f′(x)>0得1﹣lnx>0得lnx<1,得0<x<e,即函数f(x)的最大增区间为(0,e),则m的最大值为e故答案为:e【点睛】本题考查函数单调性与导数之间的应用,根据条件利用取对数得到不等式,从而可构造新函数,是解决本题的关键16、10【解析】
画出可行域,根据目标函数截距可求.【详解】解:作出可行域如下:由得,平移直线,当经过点时,截距最小,最大解得的最大值为10故答案为:10【点睛】考查可行域的画法及目标函数最大值的求法,基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】
(1)由余弦定理及已知等式得出关系,再由正弦定理可得结论;(2)由余弦定理和已知条件解得,然后由面积公式计算.【详解】解:(1)由余弦定理得,由得到,由正弦定理得.因为,,所以.(2)由题意及余弦定理可知,①由得,即,②联立①②解得,.所以.【点睛】本题考查利用正余弦定理解三角形.考查三角形面积公式,由已知条件本题主要是应用余弦定理求出边.解题时要注意对条件的分析,确定选用的公式.18、(Ⅰ)见证明;(Ⅱ)【解析】
(Ⅰ)利用等比数列的定义结合得出数列是等比数列(Ⅱ)数列是“等比-等差”的类型,利用分组求和即可得出前项和.【详解】解:(Ⅰ)当时,,故.当时,,则,,数列是首项为,公比为的等比数列.(Ⅱ)由(Ⅰ)得,,,.【点睛】(Ⅰ)证明数列是等比数列可利用定义法得出(Ⅱ)采用分组求和:把一个数列分成几个可以直接求和的数列.19、(1)见解析;(2)【解析】
(1)设,,注意到在上单增,再利用零点存在性定理即可解决;(2)函数在上单调递减,则在恒成立,即在上恒成立,构造函数,求导讨论的最值即可.【详解】(1)由已知,,所以,设,,当时,单调递增,而,,且在上图象连续不断.所以在上有唯一零点,当时,;当时,;∴在单调递减,在单调递增,故在区间上存在唯一的极小值点,即在区间上存在唯一的极小值点;(2)设,,,∴在单调递增,,即,从而,因为函数在上单调递减,∴在上恒成立,令,∵,∴,在上单调递减,,当时,,则在上单调递减,,符合题意.当时,在上单调递减,所以一定存在,当时,,在上单调递增,与题意不符,舍去.综上,的取值范围是【点睛】本题考查利用导数研究函数的极值点、不等式恒成立问题,在处理恒成立问题时,通常是构造函数,转化成函数的最值来处理,本题是一道较难的题.20、(1);(2)见解析.【解析】
(1)将所求问题转化为在上有解,进一步转化为函数最值问题;(2)将所证不等式转化为,进一步转化为,然后再通过构造加以证明即可.【详解】(1),根据题意,在内存在单调减区间,则不等式在上有解,由得,设,则,当且仅当时,等号成立,所以当时,,所以存在,使得成立,所以的取值范围为。(2)当时,,则,从而所证不等式转化为,不妨设,则不等式转化为,即,即,令,则不等式转化为,因为,则,从而不等式化为,设,则,所以在上单调递增,所以即不等式成立,故原不等式成立.【点睛】本题考查了利用导数研究函数单调性、利用导数证明不等式,这里
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度加工承揽合同具体规定2篇
- 2024年度房地产销售市场拓展战略合作合同一
- 2024年度物联网感知技术在农业中的应用合同2篇
- 2024年度化工原料采购合同
- 2024年度研发合作合同:生物制药研发项目合作细节3篇
- 股权无偿转让协议书
- 二零二四年年度物业管理合同5篇
- 皮鞋供应商选购协议
- 水晶灯批发购销合同
- 2024年度股权激励合同激励条件与权益实现2篇
- 《结肠癌护理查房》课件
- 浙江省七年级上学期语文期中试卷6套【附答案】
- 2024-2030年中国硫酸羟基氯喹原药产业未来发展趋势及投资策略分析报告
- 感恩课程课件教学课件
- 餐饮服务行业食品安全管理人员知识考试题库(附答案)
- 深邃的世界:西方绘画中的科学学习通超星期末考试答案章节答案2024年
- 青岛版五四制义务教育版小学一年级科学上册《玩彩泥》课件
- 2024年中国光伏绿色供应链发展报告-中国绿色供应链联盟光伏专委会
- 《煤矿矿井水防治》课件
- 75%食用酒精安全技术说明书(MSDS)
- 北师大版 四年级上册心理健康 第一课 我是什么样的人 多角度看自己|教案
评论
0/150
提交评论