2025届山西省晋中市平遥县平遥二中高三第二次模拟考试数学试卷含解析_第1页
2025届山西省晋中市平遥县平遥二中高三第二次模拟考试数学试卷含解析_第2页
2025届山西省晋中市平遥县平遥二中高三第二次模拟考试数学试卷含解析_第3页
2025届山西省晋中市平遥县平遥二中高三第二次模拟考试数学试卷含解析_第4页
2025届山西省晋中市平遥县平遥二中高三第二次模拟考试数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山西省晋中市平遥县平遥二中高三第二次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,,当时,不等式恒成立,则实数a的取值范围为()A. B. C. D.2.执行如图所示的程序框图,输出的结果为()A. B. C. D.3.下列图形中,不是三棱柱展开图的是()A. B. C. D.4.已知函数,则()A. B. C. D.5.已知复数是正实数,则实数的值为()A. B. C. D.6.已知双曲线的右焦点为,过原点的直线与双曲线的左、右两支分别交于两点,延长交右支于点,若,则双曲线的离心率是()A. B. C. D.7.已知函数,关于的方程R)有四个相异的实数根,则的取值范围是(

)A. B. C. D.8.已知点、.若点在函数的图象上,则使得的面积为的点的个数为()A. B. C. D.9.若非零实数、满足,则下列式子一定正确的是()A. B.C. D.10.若函数的图象上两点,关于直线的对称点在的图象上,则的取值范围是()A. B. C. D.11.已知函数,要得到函数的图象,只需将的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度12.已知m为实数,直线:,:,则“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知等比数列的前项和为,,且,则__________.14.根据记载,最早发现勾股定理的人应是我国西周时期的数学家商高,商高曾经和周公讨论过“勾3股4弦5”的问题.现有满足“勾3股4弦5”,其中“股”,为“弦”上一点(不含端点),且满足勾股定理,则______.15.设满足约束条件,则目标函数的最小值为_.16.若双曲线的离心率为,则双曲线的渐近线方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线是曲线的切线.(1)求函数的解析式,(2)若,证明:对于任意,有且仅有一个零点.18.(12分)已知函数,.(1)求函数的极值;(2)当时,求证:.19.(12分)年,山东省高考将全面实行“选”的模式(即:语文、数学、外语为必考科目,剩下的物理、化学、历史、地理、生物、政治六科任选三科进行考试).为了了解学生对物理学科的喜好程度,某高中从高一年级学生中随机抽取人做调查.统计显示,男生喜欢物理的有人,不喜欢物理的有人;女生喜欢物理的有人,不喜欢物理的有人.(1)据此资料判断是否有的把握认为“喜欢物理与性别有关”;(2)为了了解学生对选科的认识,年级决定召开学生座谈会.现从名男同学和名女同学(其中男女喜欢物理)中,选取名男同学和名女同学参加座谈会,记参加座谈会的人中喜欢物理的人数为,求的分布列及期望.,其中.20.(12分)在直角坐标系中,曲线的参数方程为(为参数),将曲线上各点纵坐标伸长到原来的2倍(横坐标不变)得到曲线,以坐标原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.(1)写出的极坐标方程与直线的直角坐标方程;(2)曲线上是否存在不同的两点,(以上两点坐标均为极坐标,,),使点、到的距离都为3?若存在,求的值;若不存在,请说明理由.21.(12分)已知不等式的解集为.(1)求实数的值;(2)已知存在实数使得恒成立,求实数的最大值.22.(10分)在以为顶点的五面体中,底面为菱形,,,,二面角为直二面角.(Ⅰ)证明:;(Ⅱ)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

由变形可得,可知函数在为增函数,由恒成立,求解参数即可求得取值范围.【详解】,即函数在时是单调增函数.则恒成立..令,则时,单调递减,时单调递增.故选:D.【点睛】本题考查构造函数,借助单调性定义判断新函数的单调性问题,考查恒成立时求解参数问题,考查学生的分析问题的能力和计算求解的能力,难度较难.2、D【解析】

由程序框图确定程序功能后可得出结论.【详解】执行该程序可得.故选:D.【点睛】本题考查程序框图.解题可模拟程序运行,观察变量值的变化,然后可得结论,也可以由程序框图确定程序功能,然后求解.3、C【解析】

根据三棱柱的展开图的可能情况选出选项.【详解】由图可知,ABD选项可以围成三棱柱,C选项不是三棱柱展开图.故选:C【点睛】本小题主要考查三棱柱展开图的判断,属于基础题.4、A【解析】

根据分段函数解析式,先求得的值,再求得的值.【详解】依题意,.故选:A【点睛】本小题主要考查根据分段函数解析式求函数值,属于基础题.5、C【解析】

将复数化成标准形式,由题意可得实部大于零,虚部等于零,即可得到答案.【详解】因为为正实数,所以且,解得.故选:C【点睛】本题考查复数的基本定义,属基础题.6、D【解析】

设双曲线的左焦点为,连接,,,设,则,,,和中,利用勾股定理计算得到答案.【详解】设双曲线的左焦点为,连接,,,设,则,,,,根据对称性知四边形为矩形,中:,即,解得;中:,即,故,故.故选:.【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.7、A【解析】=,当时时,单调递减,时,单调递增,且当,当,

当时,恒成立,时,单调递增且,方程R)有四个相异的实数根.令=则,,即.8、C【解析】

设出点的坐标,以为底结合的面积计算出点到直线的距离,利用点到直线的距离公式可得出关于的方程,求出方程的解,即可得出结论.【详解】设点的坐标为,直线的方程为,即,设点到直线的距离为,则,解得,另一方面,由点到直线的距离公式得,整理得或,,解得或或.综上,满足条件的点共有三个.故选:C.【点睛】本题考查三角形面积的计算,涉及点到直线的距离公式的应用,考查运算求解能力,属于中等题.9、C【解析】

令,则,,将指数式化成对数式得、后,然后取绝对值作差比较可得.【详解】令,则,,,,,因此,.故选:C.【点睛】本题考查了利用作差法比较大小,同时也考查了指数式与对数式的转化,考查推理能力,属于中等题.10、D【解析】

由题可知,可转化为曲线与有两个公共点,可转化为方程有两解,构造函数,利用导数研究函数单调性,分析即得解【详解】函数的图象上两点,关于直线的对称点在上,即曲线与有两个公共点,即方程有两解,即有两解,令,则,则当时,;当时,,故时取得极大值,也即为最大值,当时,;当时,,所以满足条件.故选:D【点睛】本题考查了利用导数研究函数的零点,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于较难题.11、A【解析】

根据函数图像平移原则,即可容易求得结果.【详解】因为,故要得到,只需将向左平移个单位长度.故选:A.【点睛】本题考查函数图像平移前后解析式的变化,属基础题.12、A【解析】

根据直线平行的等价条件,求出m的值,结合充分条件和必要条件的定义进行判断即可.【详解】当m=1时,两直线方程分别为直线l1:x+y﹣1=0,l2:x+y﹣2=0满足l1∥l2,即充分性成立,当m=0时,两直线方程分别为y﹣1=0,和﹣2x﹣2=0,不满足条件.当m≠0时,则l1∥l2⇒,由得m2﹣3m+2=0得m=1或m=2,由得m≠2,则m=1,即“m=1”是“l1∥l2”的充要条件,故答案为:A【点睛】(1)本题主要考查充要条件的判断,考查两直线平行的等价条件,意在考查学生对这些知识的掌握水平和分析推理能力.(2)本题也可以利用下面的结论解答,直线和直线平行,则且两直线不重合,求出参数的值后要代入检验看两直线是否重合.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由题意知,继而利用等比数列的前项和为的公式代入求值即可.【详解】解:由题意知,所以.故答案为:.【点睛】本题考查了等比数列的通项公式和求和公式,属于中档题.14、【解析】

先由等面积法求得,利用向量几何意义求解即可.【详解】由等面积法可得,依题意可得,,所以.故答案为:【点睛】本题考查向量的数量积,重点考查向量数量积的几何意义,属于基础题.15、【解析】

根据满足约束条件,画出可行域,将目标函数,转化为,平移直线,找到直线在轴上截距最小时的点,此时,目标函数取得最小值.【详解】由满足约束条件,画出可行域如图所示阴影部分:将目标函数,转化为,平移直线,找到直线在轴上截距最小时的点此时,目标函数取得最小值,最小值为故答案为:-1【点睛】本题主要考查线性规划求最值,还考查了数形结合的思想方法,属于基础题.16、【解析】

利用,得到的关系式,然后代入双曲线的渐近线方程即可求解.【详解】因为双曲线的离心率为,所以,即,因为双曲线的渐近线方程为,所以双曲线的渐近线方程为.故答案为:【点睛】本题考查双曲线的几何性质;考查运算求解能力;熟练掌握双曲线的几何性质是求解本题的关键;属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】

(1)对函数求导,并设切点,利用点既在曲线上、又在切线上,列出方程组,解得,即可得答案;(2)当x充分小时,当x充分大时,可得至少有一个零点.再证明零点的唯一性,即对函数求导得,对分和两种情况讨论,即可得答案.【详解】(1)根据题意,,设直线与曲线相切于点.根据题意,可得,解之得,所以.(2)由(1)可知,则当x充分小时,当x充分大时,∴至少有一个零点.∵,①若,则,在上单调递增,∴有唯一零点.②若令,得有两个极值点,∵,∴,∴.∴在上单调递增,在上单调递减,在上单调递增.∴极大值为.,又,∴在(0,16)上单调递增,∴,∴有唯一零点.综上可知,对于任意,有且仅有一个零点.【点睛】本题考查导数的几何意义的运用、利用导数证明函数的零点个数,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力和运算求解能力,求解时注意零点存在定理的运用.18、(1)的极小值为,无极大值.(2)见解析.【解析】

(1)对求导,确定函数单调性,得到函数极值.(2)构造函数,证明恒成立,得到,,得证.【详解】(1)由题意知,,令,得,令,得.则在上单调递减,在上单调递增,所以的极小值为,无极大值.(2)当时,要证,即证.令,则,令,得,令,得,则在上单调递减,在上单调递增,所以当时,,所以,即.因为时,,所以当时,,所以当时,不等式成立.【点睛】本题考查了函数的单调性,极值,不等式的证明,构造函数是解题的关键.19、(1)有的把握认为喜欢物理与性别有关;(2)分布列见解析,.【解析】

(1)根据题目所给信息,列出列联表,计算的观测值,对照临界值表可得出结论;(2)设参加座谈会的人中喜欢物理的男同学有人,女同学有人,则,确定的所有取值为、、、、.根据计数原理计算出每个所对应的概率,列出分布列计算期望即可.【详解】(1)根据所给条件得列联表如下:男女合计喜欢物理不喜欢物理合计,所以有的把握认为喜欢物理与性别有关;(2)设参加座谈会的人中喜欢物理的男同学有人,女同学有人,则,由题意可知,的所有可能取值为、、、、.,,,,.所以的分布列为:所以.【点睛】本题考查了独立性检验、离散型随机变量的概率分布列.离散型随机变量的期望.属于中等题.20、(1),(2)存在,【解析】

(1)先求得曲线的普通方程,利用伸缩变换的知识求得曲线的直角坐标方程,再转化为极坐标方程.根据极坐标和直角坐标转化公式,求得直线的直角坐标方程.(2)求得曲线的圆心和半径,计算出圆心到直线的距离,结合图像判断出存在符合题意,并求得的值.【详解】(1)曲线的普通方程为,纵坐标伸长到原来的2倍,得到曲线的直角坐标方程为,其极坐标方程为,直线的直角坐标方程为.(2)曲线是以为圆心,为半径的圆,圆心到直线的距离.∴由图像可知,存在这样的点,,则,且点到直线的距离,∴,∴.【点睛】本小题主要考查坐标变换,考查直线和圆的位置关系,考查极坐标方程和直角坐标方程相互转化,考查参数方程化为普通方程,考查数形结合的数学思想方法,属于中档题.21、(1);(2)4【解析】

(1)分类讨论,求解x的范围,取并集,得到绝对值不等式的解集,即得解;(2)转化原不等式为:,利用均值不等式即得解.【详解】(1)当时不等式可化为当时,不等式可化为;当时,不等式可化为;综上不等式的解集为.(2)由(1)有,,,,即而当且仅当:,即,即时等号成立∴,综上实数最大值为4.【点睛】本题考查了绝对值不等式的求解与不等式的恒成立问题,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.22、(Ⅰ)见解析(Ⅱ

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论