版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山东济宁市兖州区高三第一次调研测试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.天干地支,简称为干支,源自中国远古时代对天象的观测.“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”称为十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”称为十二地支.干支纪年法是天干和地支依次按固定的顺序相互配合组成,以此往复,60年为一个轮回.现从农历2000年至2019年共20个年份中任取2个年份,则这2个年份的天干或地支相同的概率为()A. B. C. D.2.在很多地铁的车厢里,顶部的扶手是一根漂亮的弯管,如下图所示.将弯管形状近似地看成是圆弧,已知弯管向外的最大突出(图中)有,跨接了6个坐位的宽度(),每个座位宽度为,估计弯管的长度,下面的结果中最接近真实值的是()A. B. C. D.3.阅读下侧程序框图,为使输出的数据为31,则①处应填的数字为A.4 B.5 C.6 D.74.“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称,旨在积极发展我国与沿线国家经济合作关系,共同打造政治互信、经济融合、文化包容的命运共同体.自2015年以来,“一带一路”建设成果显著.如图是2015—2019年,我国对“一带一路”沿线国家进出口情况统计图,下列描述错误的是()A.这五年,出口总额之和比进口总额之和大B.这五年,2015年出口额最少C.这五年,2019年进口增速最快D.这五年,出口增速前四年逐年下降5.网络是一种先进的高频传输技术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款手机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精确到月)()A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月6.若数列为等差数列,且满足,为数列的前项和,则()A. B. C. D.7.已知,,则等于().A. B. C. D.8.刘徽是我国魏晋时期伟大的数学家,他在《九章算术》中对勾股定理的证明如图所示.“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不移动也.合成弦方之幂,开方除之,即弦也”.已知图中网格纸上小正方形的边长为1,其中“正方形为朱方,正方形为青方”,则在五边形内随机取一个点,此点取自朱方的概率为()A. B. C. D.9.函数且的图象是()A. B.C. D.10.已知函数,要得到函数的图象,只需将的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度11.已知命题p:若,,则;命题q:,使得”,则以下命题为真命题的是()A. B. C. D.12.已知定义在上函数的图象关于原点对称,且,若,则()A.0 B.1 C.673 D.674二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,则________.14.已知双曲线的左、右焦点分别为为双曲线上任一点,且的最小值为,则该双曲线的离心率是__________.15.如图在三棱柱中,,,,点为线段上一动点,则的最小值为________.16.已知集合,,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,曲线在点处的切线在y轴上的截距为.(1)求a;(2)讨论函数和的单调性;(3)设,求证:.18.(12分)在中,角,,的对边分别为,,,已知.(1)若,,成等差数列,求的值;(2)是否存在满足为直角?若存在,求的值;若不存在,请说明理由.19.(12分)已知函数.(1)求不等式的解集;(2)若对任意恒成立,求的取值范围.20.(12分)已知矩阵不存在逆矩阵,且非零特低值对应的一个特征向量,求的值.21.(12分)已知椭圆()的离心率为,且经过点.(1)求椭圆的方程;(2)过点作直线与椭圆交于不同的两点,,试问在轴上是否存在定点使得直线与直线恰关于轴对称?若存在,求出点的坐标;若不存在,说明理由.22.(10分)已知函数,当时,有极大值3;(1)求,的值;(2)求函数的极小值及单调区间.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
利用古典概型概率计算方法分析出符合题意的基本事件个数,结合组合数的计算即可出求得概率.【详解】20个年份中天干相同的有10组(每组2个),地支相同的年份有8组(每组2个),从这20个年份中任取2个年份,则这2个年份的天干或地支相同的概率.故选:B.【点睛】本小题主要考查古典概型的计算,考查组合数的计算,考查学生分析问题的能力,难度较易.2、B【解析】
为弯管,为6个座位的宽度,利用勾股定理求出弧所在圆的半径为,从而可得弧所对的圆心角,再利用弧长公式即可求解.【详解】如图所示,为弯管,为6个座位的宽度,则设弧所在圆的半径为,则解得可以近似地认为,即于是,长所以是最接近的,其中选项A的长度比还小,不可能,因此只能选B,260或者由,所以弧长.故选:B【点睛】本题考查了弧长公式,需熟记公式,考查了学生的分析问题的能力,属于基础题.3、B【解析】考点:程序框图.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求S的值,我们用表格列出程序运行过程中各变量的值的变化情况,不难给出答案.解:程序在运行过程中各变量的值如下表示:Si是否继续循环循环前11/第一圈32是第二圈73是第三圈154是第四圈315否故最后当i<5时退出,故选B.4、D【解析】
根据统计图中数据的含义进行判断即可.【详解】对A项,由统计图可得,2015年出口额和进口额基本相等,而2016年到2019年出口额都大于进口额,则A正确;对B项,由统计图可得,2015年出口额最少,则B正确;对C项,由统计图可得,2019年进口增速都超过其余年份,则C正确;对D项,由统计图可得,2015年到2016年出口增速是上升的,则D错误;故选:D【点睛】本题主要考查了根据条形统计图和折线统计图解决实际问题,属于基础题.5、C【解析】
根据图形,计算出,然后解不等式即可.【详解】解:,点在直线上,令因为横轴1代表2019年8月,所以横轴13代表2020年8月,故选:C【点睛】考查如何确定线性回归直线中的系数以及线性回归方程的实际应用,基础题.6、B【解析】
利用等差数列性质,若,则求出,再利用等差数列前项和公式得【详解】解:因为,由等差数列性质,若,则得,.为数列的前项和,则.故选:.【点睛】本题考查等差数列性质与等差数列前项和.(1)如果为等差数列,若,则.(2)要注意等差数列前项和公式的灵活应用,如.7、B【解析】
由已知条件利用诱导公式得,再利用三角函数的平方关系和象限角的符号,即可得到答案.【详解】由题意得,又,所以,结合解得,所以,故选B.【点睛】本题考查三角函数的诱导公式、同角三角函数的平方关系以及三角函数的符号与位置关系,属于基础题.8、C【解析】
首先明确这是一个几何概型面积类型,然后求得总事件的面积和所研究事件的面积,代入概率公式求解.【详解】因为正方形为朱方,其面积为9,五边形的面积为,所以此点取自朱方的概率为.故选:C【点睛】本题主要考查了几何概型的概率求法,还考查了数形结合的思想和运算求解的能力,属于基础题.9、B【解析】
先判断函数的奇偶性,再取特殊值,利用零点存在性定理判断函数零点分布情况,即可得解.【详解】由题可知定义域为,,是偶函数,关于轴对称,排除C,D.又,,在必有零点,排除A.故选:B.【点睛】本题考查了函数图象的判断,考查了函数的性质,属于中档题.10、A【解析】
根据函数图像平移原则,即可容易求得结果.【详解】因为,故要得到,只需将向左平移个单位长度.故选:A.【点睛】本题考查函数图像平移前后解析式的变化,属基础题.11、B【解析】
先判断命题的真假,进而根据复合命题真假的真值表,即可得答案.【详解】,,因为,,所以,所以,即命题p为真命题;画出函数和图象,知命题q为假命题,所以为真.故选:B.【点睛】本题考查真假命题的概念,以及真值表的应用,解题的关键是判断出命题的真假,难度较易.12、B【解析】
由题知为奇函数,且可得函数的周期为3,分别求出知函数在一个周期内的和是0,利用函数周期性对所求式子进行化简可得.【详解】因为为奇函数,故;因为,故,可知函数的周期为3;在中,令,故,故函数在一个周期内的函数值和为0,故.故选:B.【点睛】本题考查函数奇偶性与周期性综合问题.其解题思路:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
项和转化可得,讨论是否满足,分段表示即得解【详解】当时,由已知,可得,∵,①故,②由①-②得,∴.显然当时不满足上式,∴故答案为:【点睛】本题考查了利用求,考查了学生综合分析,转化划归,数学运算,分类讨论的能力,属于中档题.14、【解析】
根据双曲线方程,设及,将代入双曲线方程并化简可得,由题意的最小值为,结合平面向量数量积的坐标运算化简,即可求得的值,进而求得离心率即可.【详解】设点,,则,即,∵,,,当时,等号成立,∴,∴,∴.故答案为:.【点睛】本题考查了双曲线与向量的综合应用,由平面向量数量积的最值求离心率,属于中档题.15、【解析】
把绕着进行旋转,当四点共面时,运用勾股定理即可求得的最小值.【详解】将以为轴旋转至与面在一个平面,展开图如图所示,若,,三点共线时最小为,为直角三角形,故答案为:【点睛】本题考查了空间几何体的翻折,平面内两点之间线段最短,解直角三角形进行求解,考查了空间想象能力和计算能力,属于中档题.16、【解析】
直接根据集合和集合求交集即可.【详解】解:,,所以.故答案为:【点睛】本题考查集合的交集运算,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)为减函数,为增函数.(3)证明见解析【解析】
(1)求出导函数,求出切线方程,令得切线的纵截距,可得(必须利用函数的单调性求解);(2)求函数的导数,由导数的正负确定单调性;(3)不等式变形为,由递减,得(),即,即,依次放缩,.不等式,递增得(),,,,先证,然后同样放缩得出结论.【详解】解:(1)对求导,得.因此.又因为,所以曲线在点处的切线方程为,即.由题意,.显然,适合上式.令,求导得,因此为增函数:故是唯一解.(2)由(1)可知,,因为,所以为减函数.因为,所以为增函数.(3)证明:由,易得.由(2)可知,在上为减函数.因此,当时,,即.令,得,即.因此,当时,.所以成立.下面证明:.由(2)可知,在上为增函数.因此,当时,,即.因此,即.令,得,即.当时,.因为,所以,所以.所以,当时,.所以,当时,成立.综上所述,当时,成立.【点睛】本题考查导数的几何意义,考查用导数研究函数的单调性,考查用导数证明不等式.本题中不等式的证明,考查了转化与化归的能力,把不等式变形后利用第(2)小题函数的单调性得出数列的不等关系:,.这是最关键的一步.然后一步一步放缩即可证明.本题属于困难题.18、见解析【解析】
(1)因为,,成等差数列,所以,由余弦定理可得,因为,所以,即,所以.(2)若B为直角,则,,由及正弦定理可得,所以,即,上式两边同时平方,可得,所以(*).又,所以,,所以,与(*)矛盾,所以不存在满足为直角.19、(1);(2).【解析】
(1)通过讨论的范围,分为,,三种情形,分别求出不等式的解集即可;(2)通过分离参数思想问题转化为,根据绝对值不等式的性质求出最值即可得到的范围.【详解】(1)当时,原不等式等价于,解得,所以,当时,原不等式等价于,解得,所以此时不等式无解,当时,原不等式等价于,解得,所以综上所述,不等式解集为.(2)由,得,当时,恒成立,所以;当时,.因为当且仅当即或时,等号成立,所以;综上的取值范围是.【点睛】本题考查了解绝对值不等式问题,考查绝对值不等式的性质以及分类讨论思想,转化思想,属于中档题.20、【解析】
由不存在逆矩阵,可得,再利用特征多项式求出特征值3,0,,利用矩阵乘法运算即可.【详解】因为不存在逆矩阵,,所以.矩阵的特征多项式为,令,则或,所以,即,所以,所以【点睛】本题考查矩阵的乘法及特征值、特征向量有关的问题,考查学生的运算能力,是一道容易题.21、(1)(2)见解析【解析】
(1)由题得a,b,c的方程组求解即可(2)直线与直线恰关于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度摄影场地租赁标准化协议样本版B版
- 2024年度电商物流人才培养与交流合作协议
- 货架买卖合同三篇
- 2024年兄妹遗产分配标准合同模板
- 2024年专项企业管理诊断与优化咨询协议一
- 如何制定财务改善计划
- 2024年抚养权更改标准化合同书版B版
- 企业精英招聘合同参考
- 2024年度经销合同范本2篇
- 本科院校校车驾驶员聘用协议
- 小学几何五大模型
- 化工、石油安装检验测试计划(ITP)
- 生活中的科学小发现
- 欣泰电气公司财务舞弊案例分析会计公司舞弊案例分析财务管理专业
- 失禁性皮炎指南ppt课件
- 《阅读》校本课程课程纲要
- 承揽业务责任人任命书(精编版)
- 北京市农村科普示范基地项目申报书
- (完整)高中常见沉淀
- 施工图审查意见告知书
- 冀教版六年级上册总结连词成句
评论
0/150
提交评论