版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Page第04讲随机事件、频率与概率(3类核心考点精讲精练)1.5年真题考点分布5年考情考题示例考点分析关联考点2023年新Ⅱ卷,第3题,5分抽样比、样本总量、各层总数、总体容量的计算分步乘法计数原理及简单应用实际问题中的组合计数问题2.命题规律及备考策略【命题规律】本节内容是新高考卷的常考内容,设题稳定,难度较低,分值为5分【备考策略】1.理解随机事件的定义2.能正确区分必然事件、不可能事件、互斥事件与对立事件3.理解频率与概率的意义【命题预测】本节内容是新高考卷的常考内容,一般结合后面学的互斥事件、独立事件及概率的相关计算一起考查,需强化概念理解知识讲解1.事件的分类确定事件必然事件在条件S下,一定会发生的事件叫做相对于条件S的必然事件不可能事件在条件S下,一定不会发生的事件叫做相对于条件S的不可能事件随机事件在条件S下,可能发生也可能不发生的事件叫做相对于条件S的随机事件2.事件的关系与运算定义符号表示包含关系如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)B⊇A(或A⊆B)相等关系若B⊇A且A⊇BA=B并事件(和事件)若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的并事件(或和事件)A∪B(或A+B)交事件(积事件)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)A∩B(或AB)互斥事件若A∩B为不可能事件,则称事件A与事件B互斥A∩B=∅对立事件若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件A∩B=∅;P(A∪B)=P(A)+P(B)=1互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.频率与概率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=eq\f(nA,n)为事件A出现的频率.(2)对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率,简称为A的概率.考点一、事件的判断1.从5个男生、2个女生中任意选派3人,则下列事件中是必然事件的是(
)A.3个都是男生 B.至少有1个男生 C.3个都是女生 D.至少有1个女生2.有下列事件:①连续掷一枚硬币两次,两次都出现正面朝上;②异性电荷相互吸引;③在标准大气压下,水在结冰;④买了一注彩票就得了特等奖.其中是随机事件的有(
)A.①② B.①④ C.①③④ D.②④1.判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?(1)抛掷一块石子,下落;.(2)在标准大气压下且温度低于0℃时,冰融化;(3)某人射击一次,中靶;(4)如果,那么;(5)掷两枚硬币,均出现反面;(6)抛掷两枚骰子,点数之和为15;(7)从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签;(8)某电话机在1分钟内收到2次呼叫;(9)绿叶植物,不会光合作用;(10)在常温下,焊锡熔化;(11)若为实数,则;(12)某人开车通过十个路口,都遇到绿灯;其中必然事件有;不可能事件有;随机事件有考点二、事件的关系和运算1.(2024·重庆·模拟预测)对于两个事件,则事件表示的含义是(
)A.A与B同时发生 B.A与B有且仅有一个发生C.A与B至少一个发生 D.A与B不能同时发生2.(2023·四川宜宾·三模)抛掷一枚质地均匀的骰子一次,事件1表示“骰子向上的点数为奇数”,事件2表示“骰子向上的点数为偶数”,事件3表示“骰子向上的点数大于3”,事件4表示“骰子向上的点数小于3”则(
)A.事件1与事件3互斥 B.事件1与事件2互为对立事件C.事件2与事件3互斥 D.事件3与事件4互为对立事件3.(21-22高一下·河南安阳·期末)从一批产品中逐个不放回地随机抽取三件产品,设事件A为“三件产品全不是次品”,事件B为“三件产品全是次品”,事件C为“三件产品不全是次品”,事件D为“第一件是次品”则下列结论正确的是(
)A.B与D相互独立 B.B与C相互对立C. D.4.(21-22高一下·全国·开学考试)(多选)在12件同类产品中,有9件正品和3件次品,从中任意抽出3件产品,设事件“3件产品都是次品”,事件“至少有1件是次品”,事件“至少有1件是正品”,则下列结论正确的是(
)A.与为对立事件 B.与不是互斥事件C. D.5.(2024·河北沧州·一模)(多选)某学校为了丰富同学们的课外活动,为同学们举办了四种科普活动:科技展览、科普讲座、科技游艺、科技绘画.记事件:只参加科技游艺活动;事件:至少参加两种科普活动;事件:只参加一种科普活动;事件:一种科普活动都不参加;事件:至多参加一种科普活动,则下列说法正确的是(
)A.与是互斥事件 B.与是对立事件C. D.1.(24-25高三上·江苏南通·阶段练习)不透明盒子中装有除颜色外完全相同的2个红球、2个白球,现从盒子里随机取2个球.记事件:至少一个红球,事件:一个红球一个白球,则下列说法正确的是(
)A. B.C.与互斥 D.与独立2.(2023·四川内江·三模)一个人连续射击次,则下列各事件关系中,说法正确的是(
)A.事件“两次均击中”与事件“至少一次击中”互为对立事件B.事件“第一次击中”与事件“第二次击中”为互斥事件C.事件“两次均未击中”与事件“至多一次击中”互为对立事件D.事件“恰有一次击中”与事件“两次均击中”为互斥事件3.(2023·广西柳州·模拟预测)从数学必修一、二和政治必修一、二共四本书中任取两本书,那么互斥而不对立的两个事件是(
)A.至少有一本政治与都是数学 B.至少有一本政治与都是政治C.至少有一本政治与至少有一本数学 D.恰有1本政治与恰有2本政治4.(2024·全国·模拟预测)同时抛掷两颗骰子,观察向上的点数,记“点数之和为5”是事件,“点数之和为4的倍数”是事件,则(
)A.为不可能事件 B.与为互斥事件C.为必然事件 D.与为对立事件5.(23-24高二上·四川攀枝花·期末)(多选)某人打靶时连续射击两次,记事件为“第一次中靶”,事件为“至少一次中靶”,事件为“至多一次中靶”,事件为“两次都没中靶”.下列说法正确的是(
)A. B.与是互斥事件C. D.与是互斥事件,且是对立事件考点三、频率与概率1.(2022·山东威海·三模)甲、乙两人相约在某健身房锻炼身体,他们分别在两个网站查看这家健身房的评价.甲在网站A查到共有840人参与评价,其中好评率为,乙在网站B查到共有1260人参与评价,其中好评率为.综合考虑这两个网站的信息,则这家健身房的总好评率为(
)A. B. C. D.2.(22-23高二上·湖北武汉·期中)在一次抛硬币的试验中,某同学用一枚质地均匀的硬币做了800次试验,发现正面朝上出现了440次,那么出现正面朝上的频率和概率分别为(
)A.0.55,0.55 B.0.55,0.5 C.0.5,0.5 D.0.5,0.553.(2021·全国·模拟预测)某超市计划按月订购一种冷饮,根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25℃,需求量为600瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20℃,需求量为100瓶.为了确定6月份的订购计划,统计了前三年6月份各天的最高气温数据,得到下面的频数分布表:最高气温天数45253818以最高气温位于各区间的频率估计最高气温位于该区间的概率.若6月份这种冷饮一天的需求量不超过x瓶的概率估计值为0.1,则x=(
)A.100 B.300 C.400 D.6001.(23-24高二上·四川达州·阶段练习)某人抛掷一枚硬币80次,结果正面朝上有43次.设正面朝上为事件A,则事件A出现的概率为.2.(23-24高三上·重庆沙坪坝·期中)在一次男子羽毛球单打比赛中,运动员甲和乙进入了决赛(比赛采用3局2胜制),假设每局比赛甲获胜的概率为0.6,现采用随机模拟方法估计甲获得冠军的概率,先由计算机产生1~5之间的随机数,指定1,2,3表示一局比赛中甲胜,4,5表示一局比赛中乙胜、经随机模拟产生了如下20组随机数:334221433551454452315142331423212541121451231414312552324115据此估计甲获得冠军的概率为.3.(2023·陕西西安·模拟预测)在一个口袋中放有个白球和个红球,这些球除颜色外都相同,某班50名学生分别从口袋中每次摸一个球,记录颜色后放回,每人连续摸10次,其中摸到白球的次数共152次,以频率估计概率,若从口袋中随机摸1个球,则摸到红球概率的估计值为.(小数点后保留一位小数)1.(22-23高二下·湖北荆州·阶段练习)在一次抛硬币的试验中,某同学用一枚质地均匀的硬币做了1000次试验,发现正面朝上出现了560次,那么出现正面朝上的频率和概率分别为(
)A.0.56,0.56 B.0.56,0.5C.0.5,0.5 D.0.5,0.562.(24-25高三上·重庆·开学考试)某池塘中饲养了A、B两种不同品种的观赏鱼,假设鱼群在池塘里是均匀分布的.在池塘的东、南、西三个采样点捕捞得到如下数据(单位:尾),若在采样点北捕捞到20尾鱼,则品种A约有(
)采样点品种A品种B东209南73西178A.6尾 B.10尾 C.13尾 D.17尾3.(23-24高二上·广东清远·阶段练习)下列说法:①必然事件的概率为.②如果某种彩票的中奖概率为,那么买张这种彩票一定能中奖.③某事件的概率为.④互斥事件一定是对立事件.其中正确的说法是(
)A.①②③④ B.① C.③④ D.①④4.(23-24高二上·河南信阳·阶段练习)同时掷两枚硬币,“向上的面都是正面”为事件,“向上的面至少有一枚是正面”为事件,则有()A. B. C. D.与之间没有关系5.(2023·山东·模拟预测)已知事件满足,,则(
)A.若,则B.若与互斥,则C.若与相互独立,则D.若,则与不相互独立6.(23-24高二下·上海·期中)出卷老师今天买了一张刮刮乐彩票,刮出500元的概率是,则这件事发生(填“必然”、“可能”或“不可能”).7.(22-23高三上·河南郑州·阶段练习)有下列事件:①在标准大气压下,水加热到时会沸腾;②实数的绝对值不小于零;③某彩票中奖的概率为,则买100000张这种彩票一定能中奖;④连续两次抛掷一枚骰子,两次都出现2点向上.其中必然事件是.8.(2020高三·全国·专题练习)“键盘侠”一词描述了部分网民在现实生活中胆小怕事、自私自利,却习惯在网络上大放厥词的一种现象.某地新闻栏目对该地区群众对“键盘侠”的认可程度进行调查:在随机抽取的50人中,有14人持认可态度,其余持反对态度,若该地区有9600人,则可估计该地区对“键盘侠”持反对态度的有人.9.(2023·全国·模拟预测)在对于一些敏感性问题调查时,被调查者往往不愿意给正确答复,因此需要特别的调查方法.调查人员设计了一个随机化装置,在其中装有形状、大小、质地完全相同的个黑球和个白球,每个被调查者随机从该装置中抽取一个球,若摸到黑球则需要如实回答问题一:你公历生日是奇数吗?若摸到白球则如实回答问题二:你是否在考试中做过弊.若人中有人回答了“是”,人回答了“否”.则问题二“考试是否做过弊”回答“是”的百分比为(以人的频率估计概率).10.(22-23高一下·全国·课后作业)抛掷一枚质地均匀的骰子,记“向上的点数是4或5或6”为事件A,“向上的点数是1或2”为事件B,“向上的点数是1或2或3或4”为事件C,“向上的点数大于3”为事件D,则下列结论正确的是.(填序号)①A与B是互斥事件,但不是对立事件;②;③A与C是互斥事件;④.1.某超市计划按月订购一种冷饮,根据往年销售经验,每天需求量与当天最高气温(单位:)有关.如果最高气温不低于,需求量为600瓶;如果最高气温位于区间内,需求量为300瓶;如果最高气温低于,需求量为100瓶.为了确定6月份的订购计划,统计了前三年6月份各天的最高气温数据,得到下面的频数分布表:最高气温天数36253818将最高气温位于各区间的频率视为最高气温位于该区间的概率,若6月份这种冷饮一天的需求量不超过x瓶的概率估计值为0.1,则(
)A.100 B.300 C.400 D.6002.某小组有3名男生和2名女生,从中任选2名参加演讲比赛,设={2名全是男生},{2名全是女生},{恰有一名男生},{至少有一名男生},则下列关系不正确的是(
)A. B. C. D.3.(23-24高二上·四川遂宁·阶段练习)抛掷一颗质地均匀的骰子,有如下随机事件:“点数为”,其中;“点数不大于2”,“点数大于2”,“点数大于4”下列结论是判断错误的是
(
)A.与互斥 B.,C. D.,为对立事件4.(多选)某篮球运动员在最近几次参加的比赛中的投篮情况如下表:投篮次数投中两分球的次数投中三分球的次数1005518记该篮球运动员在一次投篮中,投中两分球为事件A,投中三分球为事件B,没投中为事件C,用频率估计概率的方法,得到的下述结论中,正确的是()A. B.C. D.5.(2024·云南昆明·三模)(多选)在一个有限样本空间中,事件发生的概率满足,,A与互斥,则下列说法正确的是(
)A. B.A与相互独立C. D.1.(重庆·高考真题)从一堆苹果中任取10只,称得它们
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版粉煤灰运输环保风险评估与治理服务合同3篇
- 二零二五年服务合同违约金支付与损害赔偿3篇
- 二零二五版地下室房屋租赁合同附条件续约协议3篇
- 二零二五版旅游景点停车场车位租赁及旅游服务合同3篇
- 二零二五版硅酮胶产品市场调研与分析合同3篇
- 二零二五版白酒瓶装生产线租赁与回购合同3篇
- 二零二五年度养老社区场地租赁与管理合同3篇
- 二零二五版消防安全评估与应急预案合同3篇
- 2025年度绿色建筑节能改造合同范本2篇
- 二零二五版房产抵押合同变更及合同终止协议3篇
- 大学计算机基础(第2版) 课件 第1章 计算机概述
- 数字化年终述职报告
- 《阻燃材料与技术》课件 第5讲 阻燃塑料材料
- 2025年蛇年年度营销日历营销建议【2025营销日历】
- 2024年职工普法教育宣讲培训课件
- 安保服务评分标准
- T-SDLPA 0001-2024 研究型病房建设和配置标准
- (人教PEP2024版)英语一年级上册Unit 1 教学课件(新教材)
- 全国职业院校技能大赛高职组(市政管线(道)数字化施工赛项)考试题库(含答案)
- 2024胃肠间质瘤(GIST)诊疗指南更新解读 2
- 光储电站储能系统调试方案
评论
0/150
提交评论