![人教版八年级上册数学期末考试试卷含答案_第1页](http://file4.renrendoc.com/view14/M05/27/36/wKhkGWdLuiKAUnRxAAGMT2OKzLQ629.jpg)
![人教版八年级上册数学期末考试试卷含答案_第2页](http://file4.renrendoc.com/view14/M05/27/36/wKhkGWdLuiKAUnRxAAGMT2OKzLQ6292.jpg)
![人教版八年级上册数学期末考试试卷含答案_第3页](http://file4.renrendoc.com/view14/M05/27/36/wKhkGWdLuiKAUnRxAAGMT2OKzLQ6293.jpg)
![人教版八年级上册数学期末考试试卷含答案_第4页](http://file4.renrendoc.com/view14/M05/27/36/wKhkGWdLuiKAUnRxAAGMT2OKzLQ6294.jpg)
![人教版八年级上册数学期末考试试卷含答案_第5页](http://file4.renrendoc.com/view14/M05/27/36/wKhkGWdLuiKAUnRxAAGMT2OKzLQ6295.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版八年级上册数学期末考试试题一、选择题。(每小题只有一个正确答案,每小题3分)1.下列全国志愿者服务标识的设计图中,是轴对称图形的是()A.B.C.D.2.计算的结果为A. B. C. D.3.若分式的值为零,则x的值是()A.3 B.-3 C.±3 D.04.化简的结果为()A. B.a﹣1 C.a D.15.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙6.世界文化遗产“三孔”景区已经完成5G基站布设,“孔夫子家”自此有了5G网络.5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输500兆数据,5G网络比4G网络快45秒,求这两种网络的峰值速率.设4G网络的峰值速率为每秒传输兆数据,依题意,可列方程是()A. B.C. D.7.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是()A.1.5 B.2
C.
D.8.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20° B.35° C.40° D.70°9.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的△ADH中(
)A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD10.如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则()A.∠1=∠EFD B.BE=EC C.BF=DF=CD D.FD∥BC二、填空题11.分解因式:2x3﹣6x2+4x=__________.12.若A(2,b),B(a,-3)两点关于y轴对称,则a-b=_______.13.如图,七边形ABCDEFG中,AB,ED的延长线交于点O,外角∠1,∠2,∠3,∠4的和等于220°,则∠BOD的度数是_____度.14.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,则∠ACB=.15.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为________.三、解答题16.先化简,再求值:,其中.17.如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出的面积.(2)在图中作出关于y轴的对称图形(3)写出点A1,B1,C1的坐标.18.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.19.如图(单位:m),某市有一块长为(3a+b)m、宽为(2a+b)m的长方形地,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=6,b=1时,绿化的面积.20.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.21.已知:如图,点A.F,E.C在同一直线上,AB∥DC,AB=CD,∠B=∠D,(1)求证:△ABE≌△CDF;(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.22.2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.23.如图1,在长方形中,,点P从点B出发,以的速度沿向点C运动(点P运动到点C处时停止运动),设点P的运动时间为.(1)_____________.(用含t的式子表示)(2)当t为何值时,?(3)如图2,当点P从点B开始运动,同时,点Q从点C出发,以的速度沿向点D运动(点Q运动到点D处时停止运动,两点中有一点停止运动后另一点也停止运动),是否存在这样的值使得与全等?若存在,请求出的值;若不存在,请说明理由.参考答案1.C【分析】根据轴对称图形的概念判断即可.【详解】解:A、B、D中的图形不是轴对称图形,
C中的图形是轴对称图形,
故选:C.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.A【详解】【分析】先计算(-a)2,然后再进行约分即可得.【详解】==b,故选A.【点睛】本题考查了分式的乘法,熟练掌握分式乘法的运算法则是解题的关键.3.A【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】解:由题意可得x-3=0且x+3≠0,
解得x=3.
故选:A.【点睛】分式值为0,要求分子为0,分母不为0.4.B【详解】分析:根据同分母分式加减法的运算法则进行计算即可求出答案.详解:原式=,=,=a﹣1故选B.点睛:本题考查同分母分式加减法的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.5.B【详解】分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.详解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选B.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.A【分析】直接利用在峰值速率下传输500兆数据,5G网络比4G网络快45秒得出等式进而得出答案.【详解】解:设网络的峰值速率为每秒传输兆数据,依题意,可列方程是:.故选A.【点睛】此题主要考查了由实际问题抽象出分式方程,正确等量关系得出等式是解题关键.7.B【分析】根据已知条件可以得出∠E=∠ADC=,进而得出∆CEB≅∆ADC,就可以得出BE=DC,进而求出DE的值.【详解】∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=,∴∠EBC+∠BCE=,∵∠BCE+∠ACD=,∴∠EBC=∠DCA,在∆CEB和∆ADC中,∠E=∠ADC,∠EBC=∠DCA,BC=AC,∴∆CEB≅∆ADC(AAS),∴BE=DC=1,CE=AD=3,∴DE=EC-CD=3-1=2,故选:B.【点睛】本题考查全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解决问题的关键.8.B【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.【详解】∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选B.【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.9.B【分析】翻折后的图形与翻折前的图形是全等图形,利用折叠的性质,正方形的性质,以及图形的对称性特点解题.【详解】解:由图形的对称性可知:AB=AH,CD=DH,∵正方形ABCD,∴AB=CD=AD,∴AH=DH=AD.
故选B.【点睛】本题主要考查翻折图形的性质,解决本题的关键是利用图形的对称性把所求的线段进行转移.10.D【分析】由SAS易证△ADF≌△ABF,根据全等三角形的对应边相等得出∠ADF=∠ABF,又由同角的余角相等得出∠ABF=∠C,则∠ADF=∠C,根据同位角相等,两直线平行,得出FD∥BC.【详解】解:在△ADF与△ABF中,∵AF=AF,∠1=∠2,AD=AB,∴△ADF≌△ABF,∴∠ADF=∠ABF,又∵∠ABF=∠C=90°-∠CBF,∴∠ADF=∠C,∴FD∥BC.故选D11.2x(x﹣1)(x﹣2).【详解】分析:首先提取公因式2x,再利用十字相乘法分解因式得出答案.详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2).故答案为2x(x﹣1)(x﹣2).点睛:此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.12.1【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a=-2.b=-3,然后再计算出a-b即可.【详解】解:∵若A(2,b),B(a,-3)两点关于y轴对称,
∴a=-2.b=-3,
∴a-b=-2-(-3)=1,
故答案为:1.【点睛】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.13.40.【分析】在DO延长线上找一点M,根据多边形的外角和为360°可得出∠BOM=140°,再根据邻补角互补即可得出结论.【详解】解:在DO延长线上找一点M,如图所示.∵多边形的外角和为360°,∴∠BOM=360°﹣220°=140°.∵∠BOD+∠BOM=180°,∴∠BOD=180°﹣∠BOM=180°﹣140°=40°.故答案为:40【点睛】本题考查多边形的角度计算,关键在于熟记外角和360°.14.85°.【详解】试题分析:令A→南的方向为线段AE,B→北的方向为线段BD,根据题意可知,AE,DB是正南,正北的方向BD//AE=45°+15°=60°又=180°-60°-35°=85°.考点:1、方向角.2、三角形内角和.15.13【分析】设正方形A的边长为a,正方形B的边长为b,由图形得出关系式求解即可.【详解】设正方形A的边长为a,正方形B的边长为b,由图甲得:a2−b2−2(a−b)b=1,即:a2+b2−2ab=1,由图乙得:(a+b)2−a2−b2=12,2ab=12,∴a2+b2=13,故答案为:13.【点睛】本题主要考查几何图形的面积关系与整式的运算,掌握整式的加减乘除混合运算法则以及完全平方公式,是解题的关键.16.,4【分析】先根据分式混合运算的法则把原式进行化简,再把x=2代入进行计算即可.【详解】解:原式=====把代入得:原式=4【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.(1);(2)见解析;(3)A1(1,5),B1(1,0),,C1(4,3)【分析】(1)利用面积公式直接计算求出答案;(2)根据轴对称的性质确定点A1,B1,C1的位置,顺次连线即可得到图形;(3)根据(2)直接解答即可.【详解】(1)∵A(﹣1,5),B(﹣1,0),C(﹣4,3),∴AB∥y轴,AB=5-0=5,AB边上的高为-1-(-4)=3,∴=;(2)如图:(3)A1(1,5),B1(1,0),,C1(4,3).【点睛】此题考查轴对称的性质,轴对称作图,直接坐标系中点的坐标,正确理解轴对称的性质作出图形是解题的关键.18.(1)65°;(2)25°.【详解】分析:(1)先根据直角三角形两锐角互余求出∠ABC=90°﹣∠A=50°,由邻补角定义得出∠CBD=130°.再根据角平分线定义即可求出∠CBE=∠CBD=65°;(2)先根据直角三角形两锐角互余的性质得出∠CEB=90°﹣65°=25°,再根据平行线的性质即可求出∠F=∠CEB=25°.详解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.点睛:本题考查了三角形内角和定理,直角三角形两锐角互余的性质,平行线的性质,邻补角定义,角平分线定义.掌握各定义与性质是解题的关键.19.(5a2+3ab)m2,198m2【分析】首先列出阴影部分的面积的表达式,再化简求值.【详解】解:绿化的面积为(3a+b)(2a+b)-(a+b)2=(5a2+3ab)m2当a=6,b=1时,绿化的面积为5a2+3ab=5×62+3×6×1=198(m2)【点睛】本题运用列代数式求值的知识点,关键是化简时要算准确.20.(1)∠ECD=36°;(2)BC长是5.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=CE,然后根据等边对等角可得∠ECD=∠A;(2)根据等腰三角形性质和三角形内角和定理求出∠B=∠ACB=72°,由外角和定理求出∠BEC=∠A+∠ECD=72°,继而得∠BEC=∠B,推出BC=CE即可.【详解】解:(1)∵DE垂直平分AC,∴CE=AE,∴∠ECD=∠A=36°;(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∴∠BEC=∠A+∠ECD=72°,∴∠BEC=∠B,∴BC=EC=5.【点睛】本题考查了线段垂直平分线定理,等腰三角形的性质,三角形的内角和定理的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.21.(1)证明见解析;(2)AB=10.【分析】(1)根据平行线的性质得出∠A=∠C,进而利用全等三角形的判定证明即可;(2)利用全等三角形的性质和中点的性质解答即可.【详解】解:(1)证明:∵AB∥DC,∴∠A=∠C,在△ABE与△CDF中,∴△ABE≌△CDF(ASA);(2)∵点E,G分别为线段FC,FD的中点,∴ED=CD,∵EG=5,∴CD=10,∵△ABE≌△CDF,∴AB=CD=10.【点睛】此题考查全等三角形的判定和性质,关键是根据平行线的性质得出∠A=∠C.22.(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年别墅建设合同范例
- 2025年农村道路安全改善工程合同
- 2025年企业食堂经营承包合同
- 2025年二手车交易双方性权益保障协议书
- 2025年医疗康复人才交流策划协议
- 2025年交通供电检测装备项目申请报告
- 2025年二手房产交易合同额外补充协议
- 2025年海洋台站仪器项目提案报告
- 2025年度学生权益保障协议书
- 2025年太阳能热电站交易合同模板
- (完整版)园艺产品贮藏与加工
- 学前教育大专毕业论文3000字
- 骨骼肌-人体解剖学-运动系统
- 高中体育与健康-足球踢墙式“二过一”战术教学课件设计
- 儿童财商养成教育讲座PPT
- 前庭性偏头痛诊断
- 三下《动物的一生》教材解读
- 神木市孙家岔镇神能乾安煤矿矿山地质环境保护与土地复垦方案
- 那些活了很久很久的树
- 2023年R2移动式压力容器充装操作证考试题及答案(完整版)
- 无为市人民医院城东医院建设项目环境影响报告书
评论
0/150
提交评论