2025届江苏省淮安市车桥中学高考数学全真模拟密押卷含解析_第1页
2025届江苏省淮安市车桥中学高考数学全真模拟密押卷含解析_第2页
2025届江苏省淮安市车桥中学高考数学全真模拟密押卷含解析_第3页
2025届江苏省淮安市车桥中学高考数学全真模拟密押卷含解析_第4页
2025届江苏省淮安市车桥中学高考数学全真模拟密押卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省淮安市车桥中学高考数学全真模拟密押卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,则()A. B.C. D.2.设i是虚数单位,若复数是纯虚数,则a的值为()A. B.3 C.1 D.3.已知抛物线的焦点与双曲线的一个焦点重合,且抛物线的准线被双曲线截得的线段长为,那么该双曲线的离心率为()A. B. C. D.4.等差数列中,已知,且,则数列的前项和中最小的是()A.或 B. C. D.5.已知斜率为k的直线l与抛物线交于A,B两点,线段AB的中点为,则斜率k的取值范围是()A. B. C. D.6.已知我市某居民小区户主人数和户主对户型结构的满意率分别如图和如图所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为A.240,18 B.200,20C.240,20 D.200,187.已知为两条不重合直线,为两个不重合平面,下列条件中,的充分条件是()A.∥ B.∥C.∥∥ D.8.公元前世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在跑步英雄阿基里斯前面米处开始与阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的倍.当比赛开始后,若阿基里斯跑了米,此时乌龟便领先他米,当阿基里斯跑完下一个米时,乌龟先他米,当阿基里斯跑完下-个米时,乌龟先他米....所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为米时,乌龟爬行的总距离为()A.米 B.米C.米 D.米9.“完全数”是一些特殊的自然数,它所有的真因子(即除了自身以外的约数)的和恰好等于它本身.古希腊数学家毕达哥拉斯公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28不在同一组的概率为()A. B. C. D.10.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重比为58.79kg11.设是等差数列的前n项和,且,则()A. B. C.1 D.212.若复数满足,则对应的点位于复平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题:本题共4小题,每小题5分,共20分。13.已知,满足约束条件则的最大值为__________.14.已知一组数据,1,0,,的方差为10,则________15.展开式中的系数为_________.(用数字做答)16.已知(为虚数单位),则复数________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M为PC的中点.(1)求异面直线AP,BM所成角的余弦值;(2)点N在线段AD上,且AN=λ,若直线MN与平面PBC所成角的正弦值为,求λ的值.18.(12分)已知,函数有最小值7.(1)求的值;(2)设,,求证:.19.(12分)已知函数,.(1)若函数在上单调递减,且函数在上单调递增,求实数的值;(2)求证:(,且).20.(12分)已知各项均为正数的数列的前项和为,满足,,,,恰为等比数列的前3项.(1)求数列,的通项公式;(2)求数列的前项和为;若对均满足,求整数的最大值;(3)是否存在数列满足等式成立,若存在,求出数列的通项公式;若不存在,请说明理由.21.(12分)团购已成为时下商家和顾客均非常青睐的一种省钱、高校的消费方式,不少商家同时加入多家团购网.现恰有三个团购网站在市开展了团购业务,市某调查公司为调查这三家团购网站在本市的开展情况,从本市已加入了团购网站的商家中随机地抽取了50家进行调查,他们加入这三家团购网站的情况如下图所示.(1)从所调查的50家商家中任选两家,求他们加入团购网站的数量不相等的概率;(2)从所调查的50家商家中任取两家,用表示这两家商家参加的团购网站数量之差的绝对值,求随机变量的分布列和数学期望;(3)将频率视为概率,现从市随机抽取3家已加入团购网站的商家,记其中恰好加入了两个团购网站的商家数为,试求事件“”的概率.22.(10分)已知数列的前n项和,是等差数列,且.(Ⅰ)求数列的通项公式;(Ⅱ)令.求数列的前n项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

由题意和交集的运算直接求出.【详解】∵集合,∴.故选:C.【点睛】本题考查了集合的交集运算.集合进行交并补运算时,常借助数轴求解.注意端点处是实心圆还是空心圆.2、D【解析】

整理复数为的形式,由复数为纯虚数可知实部为0,虚部不为0,即可求解.【详解】由题,,因为纯虚数,所以,则,故选:D【点睛】本题考查已知复数的类型求参数范围,考查复数的除法运算.3、A【解析】

由抛物线的焦点得双曲线的焦点,求出,由抛物线准线方程被曲线截得的线段长为,由焦半径公式,联立求解.【详解】解:由抛物线,可得,则,故其准线方程为,抛物线的准线过双曲线的左焦点,.抛物线的准线被双曲线截得的线段长为,,又,,则双曲线的离心率为.故选:.【点睛】本题考查抛物线的性质及利用过双曲线的焦点的弦长求离心率.弦过焦点时,可结合焦半径公式求解弦长.4、C【解析】

设公差为,则由题意可得,解得,可得.令

,可得

当时,,当时,,由此可得数列前项和中最小的.【详解】解:等差数列中,已知,且,设公差为,

则,解得

,.

,可得,故当时,,当时,,

故数列前项和中最小的是.故选:C.【点睛】本题主要考查等差数列的性质,等差数列的通项公式的应用,属于中档题.5、C【解析】

设,,,,设直线的方程为:,与抛物线方程联立,由△得,利用韦达定理结合已知条件得,,代入上式即可求出的取值范围.【详解】设直线的方程为:,,,,,联立方程,消去得:,△,,且,,,线段的中点为,,,,,,,,把代入,得,,,故选:【点睛】本题主要考查了直线与抛物线的位置关系,考查了韦达定理的应用,属于中档题.6、A【解析】

利用统计图结合分层抽样性质能求出样本容量,利用条形图能求出抽取的户主对四居室满意的人数.【详解】样本容量为:(150+250+400)×30%=240,∴抽取的户主对四居室满意的人数为:故选A.【点睛】本题考查样本容量和抽取的户主对四居室满意的人数的求法,是基础题,解题时要认真审题,注意统计图的性质的合理运用.7、D【解析】

根据面面垂直的判定定理,对选项中的命题进行分析、判断正误即可.【详解】对于A,当,,时,则平面与平面可能相交,,,故不能作为的充分条件,故A错误;对于B,当,,时,则,故不能作为的充分条件,故B错误;对于C,当,,时,则平面与平面相交,,,故不能作为的充分条件,故C错误;对于D,当,,,则一定能得到,故D正确.故选:D.【点睛】本题考查了面面垂直的判断问题,属于基础题.8、D【解析】

根据题意,是一个等比数列模型,设,由,解得,再求和.【详解】根据题意,这是一个等比数列模型,设,所以,解得,所以.故选:D【点睛】本题主要考查等比数列的实际应用,还考查了建模解模的能力,属于中档题.9、C【解析】

先求出五个“完全数”随机分为两组,一组2个,另一组3个的基本事件总数为,再求出6和28恰好在同一组包含的基本事件个数,根据即可求出6和28不在同一组的概率.【详解】解:根据题意,将五个“完全数”随机分为两组,一组2个,另一组3个,则基本事件总数为,则6和28恰好在同一组包含的基本事件个数,∴6和28不在同一组的概率.故选:C.【点睛】本题考查古典概型的概率的求法,涉及实际问题中组合数的应用.10、D【解析】根据y与x的线性回归方程为y=0.85x﹣85.71,则=0.85>0,y与x具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该大学某女生身高增加1cm,预测其体重约增加0.85kg,C正确;该大学某女生身高为170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误.故选D.11、C【解析】

利用等差数列的性质化简已知条件,求得的值.【详解】由于等差数列满足,所以,,.故选:C【点睛】本小题主要考查等差数列的性质,属于基础题.12、D【解析】

利用复数模的计算、复数的除法化简复数,再根据复数的几何意义,即可得答案;【详解】,对应的点,对应的点位于复平面的第四象限.故选:D.【点睛】本题考查复数模的计算、复数的除法、复数的几何意义,考查运算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】

先画出约束条件的可行域,根据平移法判断出最优点,代入目标函数的解析式,易可得到目标函数的最大值.【详解】解:由约束条件得如图所示的三角形区域,由于,则,要求的最大值,则求的截距的最小值,显然当平行直线过点时,取得最大值为:.故答案为:1.【点睛】本题考查线性规划求最值问题,我们常用几何法求最值.14、7或【解析】

依据方差公式列出方程,解出即可.【详解】,1,0,,的平均数为,所以解得或.【点睛】本题主要考查方差公式的应用.15、210【解析】

转化,只有中含有,即得解.【详解】只有中含有,其中的系数为故答案为:210【点睛】本题考查了二项式系数的求解,考查了学生概念理解,转化划归,数学运算的能力,属于中档题.16、【解析】

解:故答案为:【点睛】本题考查复数代数形式的乘除运算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)1【解析】

(1)先根据题意建立空间直角坐标系,求得向量和向量的坐标,再利用线线角的向量方法求解.(2,由AN=λ,设N(0,λ,0)(0≤λ≤4),则=(-1,λ-1,-2),再求得平面PBC的一个法向量,利用直线MN与平面PBC所成角的正弦值为,由|cos〈,〉|===求解.【详解】(1)因为PA⊥平面ABCD,且AB,AD⊂平面ABCD,所以PA⊥AB,PA⊥AD.又因为∠BAD=90°,所以PA,AB,AD两两互相垂直.分别以AB,AD,AP为x,y,z轴建立空间直角坐标系,则由AD=2AB=2BC=4,PA=4可得A(0,0,0),B(2,0,0),C(2,2,0),D(0,4,0),P(0,0,4).又因为M为PC的中点,所以M(1,1,2).所以=(-1,1,2),=(0,0,4),所以cos〈,〉===,所以异面直线AP,BM所成角的余弦值为.(2)因为AN=λ,所以N(0,λ,0)(0≤λ≤4),则=(-1,λ-1,-2),=(0,2,0),=(2,0,-4).设平面PBC的法向量为=(x,y,z),则即令x=2,解得y=0,z=1,所以=(2,0,1)是平面PBC的一个法向量.因为直线MN与平面PBC所成角的正弦值为,所以|cos〈,〉|===,解得λ=1∈[0,4],所以λ的值为1.【点睛】本题主要考查了空间向量法研究空间中线线角,线面角的求法及应用,还考查了转化化归的思想和运算求解的能力,属于中档题.18、(1).(2)见解析【解析】

(1)由绝对值三解不等式可得,所以当时,,即可求出参数的值;(2)由,可得,再利用基本不等式求出的最小值,即可得证;【详解】解:(1)∵,∴当时,,解得.(2)∵,∴,∴,当且仅当,即,时,等号成立.∴.【点睛】本题主要考查绝对值三角不等式及基本不等式的简单应用,属于中档题.19、(1)1;(2)见解析【解析】

(1)分别求得与的导函数,由导函数与单调性关系即可求得的值;(2)由(1)可知当时,,当时,,因而,构造,由对数运算及不等式放缩可证明,从而不等式可证明.【详解】(1)∵函数在上单调递减,∴,即在上恒成立,∴,又∵函数在上单调递增,∴,即在上恒成立,,∴综上可知,.(2)证明:由(1)知,当时,函数在上为减函数,在上为增函数,而,∴当时,,当时,.∴∴即,∴.【点睛】本题考查了导数与函数单调性关系,放缩法在证明不等式中的应用,属于难题.20、(2),(2),的最大整数是2.(3)存在,【解析】

(2)由可得(),然后把这两个等式相减,化简得,公差为2,因为,,为等比数列,所以,化简计算得,,从而得到数列的通项公式,再计算出,,,从而可求出数列的通项公式;(2)令,化简计算得,从而可得数列是递增的,所以只要的最小值大于即可,而的最小值为,所以可得答案;(3)由题意可知,,即,这个可看成一个数列的前项和,再写出其前()项和,两式相减得,,利用同样的方法可得.【详解】解:(2)由题,当时,,即当时,①②①-②得,整理得,又因为各项均为正数的数列.故是从第二项的等差数列,公差为2.又恰为等比数列的前3项,故,解得.又,故,因为也成立.故是以为首项,2为公差的等差数列.故.即2,4,8恰为等比数列的前3项,故是以为首项,公比为的等比数列,故.综上,(2)令,则所以数列是递增的,若对均满足,只要的最小值大于即可因为的最小值为,所以,所以的最大整数是2.(3)由,得,③④③-④得,⑤,⑥⑤-⑥得,,所以存在这样的数列,【点睛】此题考查了等差数列与等比数列的通项公式与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论