版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
自觉遵守考场纪律如考试作弊此答卷无效密自觉遵守考场纪律如考试作弊此答卷无效密封线第1页,共3页湖北工程学院《CIS设计》
2022-2023学年第一学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分批阅人一、单选题(本大题共30个小题,每小题1分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在计算机视觉的三维重建任务中,假设要从一组二维图像恢复出物体的三维结构。以下关于三维重建方法的描述,正确的是:()A.基于立体视觉的方法需要多视角的图像,并且对相机的标定精度要求不高B.结构光方法能够快速准确地获取物体表面的三维信息,但对环境光敏感C.从运动中恢复结构(SfM)方法只适用于静态场景,无法处理动态物体D.所有的三维重建方法都能够生成高精度的、完整的物体三维模型2、计算机视觉在自动驾驶领域有重要应用。假设要开发一个能够识别道路标志的系统,以下关于应对不同光照条件的策略,哪一项是最为有效的?()A.使用固定的阈值对图像进行二值化处理B.采用自适应的图像增强算法,根据光照情况调整图像C.忽略光照变化,依靠模型的泛化能力D.只在特定的光照条件下收集训练数据3、在计算机视觉中,图像增强技术用于改善图像的质量。以下关于图像增强的描述,不正确的是()A.图像增强可以包括对比度增强、锐化、去噪等操作B.图像增强的目的是使图像更适合人类视觉观察或后续的处理任务C.过度的图像增强可能会导致图像失真或引入噪声D.图像增强只对低质量的图像有效果,对于高质量的图像没有必要进行增强4、在计算机视觉的图像生成任务中,假设要生成逼真的人脸图像。以下关于生成模型的架构选择,哪一项是需要特别关注的?()A.选择传统的多层感知机(MLP)架构B.采用生成对抗网络(GAN)架构,通过对抗训练生成高质量图像C.运用卷积神经网络(CNN)架构,但不使用池化层D.构建循环神经网络(RNN)架构,处理图像的序列信息5、计算机视觉中的图像去噪旨在去除图像中的噪声,同时保留图像的细节和结构。假设我们有一张受到严重噪声污染的医学图像,以下哪种图像去噪方法能够在去除噪声的同时,最大程度地保留图像的边缘和纹理信息?()A.均值滤波B.中值滤波C.高斯滤波D.基于小波变换的去噪方法6、在一个基于计算机视觉的机器人导航系统中,需要根据环境图像来规划机器人的路径。以下哪种视觉导航方法可能更适合复杂动态环境?()A.基于地图的导航B.基于视觉里程计的导航C.基于深度学习的端到端导航D.以上都是7、计算机视觉中的姿态估计是确定物体在三维空间中的位置和方向。假设要估计一个机器人手臂的姿态,以下关于姿态估计方法的描述,哪一项是不正确的?()A.基于视觉的姿态估计可以通过分析物体在图像中的特征点来计算其姿态B.可以结合多个摄像头的图像信息,提高姿态估计的精度和鲁棒性C.姿态估计通常需要先对物体进行建模,然后通过匹配图像和模型来确定姿态D.姿态估计的结果总是非常准确,不受图像噪声、遮挡和物体形状变化的影响8、对于图像的纹理分析任务,假设要描述和区分不同类型的纹理,例如木纹和石纹。以下哪种方法可能更有助于准确分析纹理特征?()A.基于统计的方法,计算纹理的灰度共生矩阵B.基于模型的方法,如马尔可夫随机场C.仅通过肉眼观察和主观描述纹理D.不进行任何纹理分析,直接忽略纹理信息9、在图像分类任务中,深度学习模型取得了显著的成果。假设要对一组包含不同动物的图像进行分类,以下关于图像分类模型的描述,正确的是:()A.模型的层数越多,分类准确率一定越高B.数据增强技术,如旋转、裁剪等,对模型的性能提升没有帮助C.结合多种特征提取方法和分类器,可以提高图像分类的准确性和鲁棒性D.图像分类模型不需要考虑图像的空间信息,只关注像素值的统计特征10、在计算机视觉的动作识别任务中,区分不同的人体动作。假设要从一段视频中识别出一个人是在跑步还是走路,以下关于动作识别方法的描述,正确的是:()A.基于骨架信息的动作识别方法对人体姿态的微小变化不敏感B.只考虑动作的空间特征就能准确识别不同的动作C.融合时空特征和深度学习模型能够提升动作识别的准确率D.动作识别的结果不受视频拍摄角度和背景干扰的影响11、在计算机视觉的应用中,人脸识别是一个常见的任务。假设一个公司要建立一个门禁系统,通过人脸识别来允许员工进入。为了提高人脸识别的准确性和鲁棒性,以下哪种技术通常会被采用?()A.基于几何特征的人脸识别B.基于模板匹配的人脸识别C.基于深度学习的人脸识别,结合多模态数据D.基于颜色特征的人脸识别12、计算机视觉在体育赛事分析中的应用可以提供更深入的比赛洞察。假设要分析一场足球比赛中球员的跑位和传球模式,以下关于体育赛事计算机视觉应用的描述,正确的是:()A.仅依靠球员的位置信息就能全面分析比赛中的战术和策略B.球员的速度和加速度等动态信息对比赛分析的价值不大C.结合深度学习和轨迹分析技术可以更有效地挖掘比赛中的关键模式和趋势D.比赛场地的光照和摄像机视角对计算机视觉分析的结果没有影响13、在计算机视觉的场景理解任务中,需要对整个图像场景进行分析和解释。假设我们有一张城市街道的图像,要理解其中的道路、建筑物、车辆和行人之间的关系。以下哪种方法能够提供更全面和深入的场景理解?()A.基于对象检测和分类的方法B.基于语义分割和图模型的方法C.基于深度学习的场景解析网络D.基于特征匹配和聚类的方法14、视频分析是计算机视觉的一个重要领域。假设要对一段监控视频中的行为进行分析和理解,以下关于视频分析方法的描述,正确的是:()A.直接将视频中的每一帧图像作为独立的图像进行处理,就能准确分析视频中的行为B.考虑视频的时序信息和帧间的相关性对于理解复杂的行为非常重要C.视频分析只适用于简单的动作识别,对于复杂的多人物交互行为无法处理D.视频的分辨率和帧率对视频分析的结果没有影响15、在计算机视觉的图像检索任务中,需要根据用户提供的查询图像找到相似的图像。假设我们有一个大型的图像数据库,以下哪种图像表示方法能够提高图像检索的效率和准确性?()A.基于全局特征的图像表示B.基于局部特征的图像表示C.基于深度学习的图像嵌入表示D.基于颜色直方图的图像表示16、图像分割是将图像分成不同的区域或对象。假设要对医学影像中的肿瘤区域进行精确分割,以下关于图像分割方法的描述,正确的是:()A.手动分割是最准确的方法,不需要借助计算机算法B.基于阈值的图像分割方法能够适用于所有类型的医学影像分割问题C.深度学习中的全卷积网络(FCN)及其变体在医学图像分割中具有很大的潜力D.图像分割的结果只取决于所使用的分割算法,与图像的预处理无关17、在计算机视觉的目标跟踪任务中,需要持续跟踪一个或多个运动目标。假设要跟踪一个在操场上跑步的人。以下关于目标跟踪算法的描述,哪一项是不正确的?()A.可以基于特征匹配的方法,在连续的帧中找到目标的相似特征来实现跟踪B.深度学习中的相关滤波算法能够快速准确地跟踪目标,适应目标的外观变化C.目标跟踪算法能够在目标被遮挡或短暂消失后,仍然准确地恢复跟踪D.无论目标的运动速度和轨迹如何复杂,目标跟踪算法都能完美地跟踪18、当利用计算机视觉进行图像语义分割任务,例如将图像中的不同物体分割出来,以下哪种深度学习架构可能在分割精度和效率方面表现较好?()A.FCNB.U-NetC.SegNetD.以上都是19、在计算机视觉的视频压缩中,为了在保证视觉质量的同时减少数据量,以下哪种技术可能被广泛应用?()A.运动估计和补偿B.图像分割C.特征点检测D.边缘检测20、当进行视频中的动作识别时,假设要分析一段运动员训练的视频,识别出其中的各种动作,如跑步、跳跃和举重等。视频中的动作可能存在速度变化、遮挡和视角变化等问题。为了准确识别这些动作,以下哪种技术是关键的?()A.对每一帧图像进行独立的动作分类,然后综合结果B.利用光流信息来捕捉视频中的运动模式C.只关注视频中的关键帧,忽略其他帧D.不考虑视频的时序信息,将其视为一系列独立的图像21、在进行计算机视觉的三维重建时,需要从多个视角的图像中恢复物体的三维形状和结构。假设要对一个复杂的古建筑进行三维重建,图像采集存在视角偏差和部分遮挡。以下哪种三维重建方法在处理这种不完整和有噪声的数据时效果较好?()A.基于立体视觉的重建B.基于运动恢复结构(SfM)的重建C.基于激光扫描的重建D.基于深度学习的重建22、计算机视觉在农业领域的应用可以帮助实现精准农业。假设一个农场需要通过计算机视觉监测农作物的生长状况。以下关于计算机视觉在农业中的描述,哪一项是错误的?()A.可以检测农作物的病虫害,及时采取防治措施B.能够评估农作物的生长阶段和成熟度,指导收获时间C.计算机视觉在农业中的应用完全不受天气和光照条件的影响D.可以通过无人机搭载摄像头进行大面积的农田监测23、当进行图像的光流估计时,假设要计算图像中像素的运动速度和方向。以下哪种光流估计算法在复杂场景下可能更准确?()A.Horn-Schunck算法B.Lucas-Kanade算法C.随机估计光流D.不进行光流估计,忽略像素的运动信息24、在计算机视觉的图像配准任务中,假设要将两张拍摄角度不同的同一物体的图像进行对齐。以下关于特征匹配的方法,哪一项是不太可靠的?()A.使用SIFT(Scale-InvariantFeatureTransform)特征进行匹配B.基于像素值的直接比较进行匹配C.利用SURF(SpeededUpRobustFeatures)特征进行匹配D.通过ORB(OrientedFASTandRotatedBRIEF)特征进行匹配25、在计算机视觉的图像去噪任务中,假设要去除一张受到严重噪声污染的图像中的噪声,同时尽可能保留图像的细节和边缘信息。以下哪种去噪方法可能更适合?()A.中值滤波,用邻域中值代替像素值B.均值滤波,用邻域平均值代替像素值C.基于深度学习的图像去噪模型,如DnCNND.不进行任何去噪处理,保留原始噪声图像26、在计算机视觉的立体视觉任务中,通过两个或多个相机获取的图像来计算深度信息。以下哪种立体匹配算法在精度和效率方面可能表现较好?()A.基于区域的匹配算法B.基于特征的匹配算法C.基于深度学习的匹配算法D.以上都是27、在计算机视觉中,目标检测是一项重要任务。假设要在一张包含众多物体的复杂图像中准确检测出不同类型的车辆,例如轿车、卡车和摩托车。图像中的车辆可能具有不同的颜色、大小和姿态,而且背景也较为复杂。为了实现高精度的车辆检测,以下哪种方法通常被认为是最有效的?()A.基于传统图像处理技术,如边缘检测和形态学操作B.使用基于深度学习的目标检测算法,如FasterR-CNNC.采用简单的模板匹配方法,根据预先定义的车辆模板进行匹配D.对图像进行全局特征提取,然后基于这些特征进行分类28、在计算机视觉中,深度估计是确定场景中物体距离相机的距离。以下关于深度估计的说法,错误的是()A.可以通过立体视觉、结构光或飞行时间等技术来获取深度信息B.深度学习方法在单目深度估计中取得了显著进展C.深度估计对于三维重建、虚拟现实和增强现实等应用具有重要意义D.深度估计的结果总是非常精确,不需要进行后处理和优化29、在计算机视觉中,图像超分辨率重建是提高图像分辨率和质量的技术。以下关于图像超分辨率重建的叙述,不正确的是()A.图像超分辨率重建可以通过插值、基于模型的方法或深度学习方法来实现B.深度学习方法在图像超分辨率重建中能够生成更清晰、逼真的细节C.图像超分辨率重建在医学图像、卫星图像和监控图像等领域有重要的应用D.图像超分辨率重建可以无限制地提高图像的分辨率,不受原始图像信息的限制30、在计算机视觉的自动驾驶应用中,车辆需要准确识别道路标志、交通信号灯和其他车辆的状态。对于实时性和准确性要求极高的场景,以下哪种传感器融合技术能够为车辆提供更全面和可靠的环境感知?()A.摄像头与激光雷达的融合B.毫米波雷达与超声波传感器的融合C.多种摄像头的融合D.以上都是二、应用题(本大题共5个小题,共25分)1、(本题5分)运用图像识别技术,检测物流分拣中心的包裹分类准确性。2、(本题5分)使用目标跟踪算法,跟踪马戏表演中动物的表演动作。3、(本题5分)基于计算机视觉的疲劳驾驶检测系统,及时提醒驾驶员注意休息。4、(本题5分)利用图像识别技术,对不同品牌的化妆品包装进行识别和分类。5、(本题5分)基于计算机视觉的手势识别系统,实现简单的手势控制操作。三、简答题(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024幼儿园教职工科技创新与成果转化聘用合同3篇
- 2025年收养协议范本:专业版900字3篇
- 2025年房产再抵押借款资金合同3篇
- 2024版影视剧摄制居间合同协议
- 2025年度成都上灶师父招聘与智慧餐饮技术应用服务协议2篇
- 2024版二手房过户协议书范本
- 2025年新型城镇化公共服务设施施工合同2篇
- 二零二五版WTO贸易争端解决机制优化合同3篇
- 咸阳职业技术学院《智慧工地与智能施工设备》2023-2024学年第一学期期末试卷
- 武夷学院《可编程控制器高级应用》2023-2024学年第一学期期末试卷
- 信访邮寄材料地址【四篇】
- 工行网银代发工资操作流程
- 银行 重点客户管理办法模版
- 你来比划我来猜词语(超搞笑版)
- 酒店住宿水单模板
- 2023年高中生学校打牌检讨书(五篇)
- GB/T 1871.1-1995磷矿石和磷精矿中五氧化二磷含量的测定磷钼酸喹啉重量法和容量法
- 湖南省普通高校对口招生考试英语词汇表
- 广告拍摄制作合同
- 电气工作票培训-课件
- 2022年北京控股集团有限公司招聘笔试题库及答案解析
评论
0/150
提交评论