圆的最值模型之阿氏圆模型(解析版)(北师大版)_第1页
圆的最值模型之阿氏圆模型(解析版)(北师大版)_第2页
圆的最值模型之阿氏圆模型(解析版)(北师大版)_第3页
圆的最值模型之阿氏圆模型(解析版)(北师大版)_第4页
圆的最值模型之阿氏圆模型(解析版)(北师大版)_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

试卷第=page11页,共=sectionpages33页专题08圆的最值模型之阿氏圆模型一、模型说明背景故事:“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.模型建立:当点P在一个以O为圆心,r为半径的圆上运动时,如图所示:易证:△BOP∽△POA,,∴对于圆上任意一点P都有.对于任意一个圆,任意一个k的值,我们可以在任意一条直径所在直线上,在同侧适当的位置选取A、B点,则需【技巧总结】计算的最小值时,利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点P使得的值最小,解决步骤具体如下:①如图,将系数不为1的线段两端点与圆心相连即OP,OB②计算出这两条线段的长度比③在OB上取一点C,使得,即构造△POM∽△BOP,则,④则,当A、P、C三点共线时可得最小值二、例题精讲例1.如图1,在RT△ABC中,∠ACB=90°,CB=4,CA=6,圆C的半径为2,点P为圆上一动点,连接AP,BP,求:①,②,③,④的最小值.【答案】①;②;③;④.【分析】①在CB上取点D,使,连接CP、DP、AD.根据作图结合题意易证,即可得出,从而推出,说明当A、P、D三点共线时,最小,最小值即为长.最后在中,利用勾股定理求出AD的长即可;②由,即可求出结果;③在CA上取点E,使,连接CP、EP、BE.根据作图结合题意易证,即可得出,从而推出,说明当B、P、E三点共线时,最小,最小值即为长.最后在中,利用勾股定理求出BE的长即可;④由,即可求出结果.【详解】解:①如图,在CB上取点D,使,连接CP、DP、AD.∵,,,∴.又∵,∴,∴,即,∴,∴当A、P、D三点共线时,最小,最小值即为长.∵在中,.∴的最小值为;②∵,∴的最小值为;③如图,在CA上取点E,使,连接CP、EP、BE.∵,,,∴.又∵,∴,∴,即,∴,∴当B、P、E三点共线时,最小,最小值即为长.∵在中,.∴的最小值为;④∵,∴的最小值为.【点睛】本题考查圆的基本性质,相似三角形的判定和性质,勾股定理.正确的作出辅助线,并且理解三点共线时线段最短是解答本题的关键.例2.如图,正方形的边长为4,的半径为2,为上的动点,则的最大值是.【答案】2【分析】解法1,如图:以为斜边构造等腰直角三角形,连接,,连接、,推得,因为,求出即可求出答案.解法2:如图:连接、、,在上做点,使,连接,证明,在上做点,使,连接,证明,接着推导出,最后证明,即可求解.【详解】解法1如图:以为斜边构造等腰直角三角形,连接,,∴,,四边形正方形,又,在与中,故答案为:2.解法2如图:连接、、根据题意正方形的边长为4,的半径为2,在上做点,使,则,连接在与中,,则在上做点,使,则,连接在与中,,则如图所示连接在与中,,故答案为:2.【点睛】本题考查正方形的性质,相似三角形,勾股定理等知识,难度较大,熟悉以上知识点运用是解题关键.例3.如图,在边长为4的正方形ABCD内有一动点P,且BP=.连接CP,将线段PC绕点P逆时针旋转90°得到线段PQ.连接CQ、DQ,则DQ+CQ的最小值为.【答案】5【分析】连接AC、AQ,先证明△BCP∽△ACQ得即AQ=2,在AD上取AE=1,证明△QAE∽△DAQ得EQ=QD,故DQ+CQ=EQ+CQ≥CE,求出CE即可.【详解】解:如图,连接AC、AQ,∵四边形ABCD是正方形,PC绕点P逆时针旋转90°得到线段PQ,∴∠ACB=∠PCQ=45°,∴∠BCP=∠ACQ,cos∠ACB=,cos∠PCQ=,∴∠ACB=∠PCO,∴△BCP∽△ACQ,∴∵BP=,∴AQ=2,∴Q在以A为圆心,AQ为半径的圆上,在AD上取AE=1,∵,,∠QAE=∠DAQ,∴△QAE∽△DAQ,∴即EQ=QD,∴DQ+CQ=EQ+CQ≥CE,连接CE,∴,∴DQ+CQ的最小值为5.故答案为:5.【点睛】本题主要考查了正方形的性质,旋转的性质,相似三角形的性质与判定,三角函数,解题的关键在于能够连接AC、AQ,证明两对相似三角形求解.例4.如图,Rt△ABC,∠ACB=90°,AC=BC=2,以C为顶点的正方形CDEF(C、D、E、F四个顶点按逆时针方向排列)可以绕点C自由转动,且CD=,连接AF,BD(1)求证:△BDC≌△AFC(2)当正方形CDEF有顶点在线段AB上时,直接写出BD+AD的值;(3)直接写出正方形CDEF旋转过程中,BD+AD的最小值.【答案】(1)见解析;(2)或;(3)【分析】(1)利用SAS,即可证明△FCA≌△DCB;(2)分两种情况当点D,E在AB边上时和当点E,F在边AB上时,讨论即可求解;(3)取AC的中点M.连接DM,BM.则CM=1,可证得△DCM∽△ACD,可得DM=AD,从而得到当B,D,M共线时,BD+AD的值最小,即可求解.【详解】(1)证明:∵四边形CDEF是正方形,∴CF=CD,∠DCF=∠ACB=90°,∴∠ACF=∠DCB,∵AC=CB,∴△FCA≌△DCB(SAS);(2)解:①如图2中,当点D,E在AB边上时,∵AC=BC=2,∠ACB=90°,∴,∵CD⊥AB,∴AD=BD=,∴BD+AD=;②如图3中,当点E,F在边AB上时.BD=CF=,AD==,∴BD+AD=,综上所述,BD+AD的值或;(3)如图4中.取AC的中点M.连接DM,BM.则CM=1,∵CD=,CM=1,CA=2,∴CD2=CM•CA,∴=,∵∠DCM=∠ACD,∴△DCM∽△ACD,∴==,∴DM=AD,∴BD+AD=BD+DM,∴当B,D,M共线时,BD+AD的值最小,最小值.【点睛】本题主要考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,锐角三角函数,熟练掌握相关知识点是解题的关键.例5.如图,抛物线与轴交于,,两点(点在点的左侧),与轴交于点,且,的平分线交轴于点,过点且垂直于的直线交轴于点,点是轴下方抛物线上的一个动点,过点作轴,垂足为,交直线于点.(1)求抛物线的解析式;(2)设点的横坐标为,当时,求的值;(3)当直线为抛物线的对称轴时,以点为圆心,为半径作,点为上的一个动点,求的最小值.【答案】(1)yx2x﹣3;(2);(3).【分析】对于(1),结合已知先求出点B和点C的坐标,再利用待定系数法求解即可;对于(2),在Rt△OAC中,利用三角函数的知识求出∠OAC的度数,再利用角平分线的定义求出∠OAD的度数,进而得到点D的坐标;接下来求出直线AD的解析式,表示出点P,H,F的坐标,再利用两点间的距离公式可完成解答;对于(3),首先求出⊙H的半径,在HA上取一点K,使得HK=14,此时K(-,);然后由HQ2=HK·HA,得到△QHK∽△AHQ,再利用相似三角形的性质求出KQ=AQ,进而可得当E、Q、K共线时,AQ+EQ的值最小,据此解答.【详解】(1)由题意A(,0),B(﹣3,0),C(0,﹣3),设抛物线的解析式为y=a(x+3)(x),把C(0,﹣3)代入得到a,∴抛物线的解析式为yx2x﹣3.(2)在Rt△AOC中,tan∠OAC,∴∠OAC=60°.∵AD平分∠OAC,∴∠OAD=30°,∴OD=OA•tan30°=1,∴D(0,﹣1),∴直线AD的解析式为yx﹣1,由题意P(m,m2m﹣3),H(m,m﹣1),F(m,0).∵FH=PH,∴1m﹣1﹣(m2m﹣3)解得m或(舍弃),∴当FH=HP时,m的值为.(3)如图,∵PF是对称轴,∴F(,0),H(,﹣2).∵AH⊥AE,∴∠EAO=60°,∴EOOA=3,∴E(0,3).∵C(0,﹣3),∴HC2,AH=2FH=4,∴QHCH=1,在HA上取一点K,使得HK,此时K().∵HQ2=1,HK•HA=1,∴HQ2=HK•HA,∴.∵∠QHK=∠AHQ,∴△QHK∽△AHQ,∴,∴KQAQ,∴AQ+QE=KQ+EQ,∴当E、Q、K共线时,AQ+QE的值最小,最小值.【点睛】本题考查了相似三角形对应边成比例、两边成比例且夹角相等的两个三角形相似、待定系数法求二次函数的表达式、二次函数的图象与性质、数轴上两点间的距离公式,熟练掌握该知识点是本题解题的关键.【变式训练1】.如图,边长为4的正方形,内切圆记为⊙O,P是⊙O上一动点,则PA+PB的最小值为.【答案】【分析】PA+PB=(PA+PB),利用相似三角形构造PB即可解答.【详解】解:设⊙O半径为r,OP=r=BC=2,OB=r=2,取OB的中点I,连接PI,∴OI=IB=,∵,,∴,∠O是公共角,∴△BOP∽△POI,∴,∴PI=PB,∴AP+PB=AP+PI,∴当A、P、I在一条直线上时,AP+PB最小,作IE⊥AB于E,∵∠ABO=45°,∴IE=BE=BI=1,∴AE=AB−BE=3,∴AI=,∴AP+PB最小值=AI=,∵PA+PB=(PA+PB),∴PA+PB的最小值是AI=.故答案是.【点睛】本题是“阿氏圆”问题,解决问题的关键是构造相似三角形.【变式训练2】.如图,已知正方ABCD的边长为6,圆B的半径为3,点P是圆B上的一个动点,则的最大值为.【答案】【分析】如图,连接,在上取一点,使得,进而证明,则在点P运动的任意时刻,均有PM=,从而将问题转化为求PD-PM的最大值.连接PD,在△PDM中,PD-PM<DM,故当D、M、P共线时,PD-PM=DM为最大值,勾股定理即可求得.【详解】如图,连接,在上取一点,使得,,,,在△PDM中,PD-PM<DM,当D、M、P共线时,PD-PM=DM为最大值,四边形是正方形,在中,,故答案为:.【点睛】本题考查了圆的性质,相似三角形的性质与判定,勾股定理,构造是解题的关键.【变式训练3】.问题提出:如图①,在中,,,,⊙C的半径为2,P为圆上一动点,连接AP、BP,求的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图①,连接CP,在CB上取一点D,使,则.又,所以∽.所以.所以,所以.请你完成余下的思考,并直接写出答案:的最小值为________;(2)自主探索:在“问题提出”的条件不变的前提下,求的最小值;(3)拓展延伸:如图②,已知在扇形COD中,,,,,P是上一点,求的最小值.【答案】(1);(2);(3)13.【分析】(1)根据题意可知最小值为AD长度,利用勾股定理即可求出AD长度.(2)连接CP,在CA上取一点D,使,即可证明∽,得到,即,所以的最小值为BD长度,利用勾股定理即可求出BD长度.(3)延长OC到E,使,连接PE,OP,即可证明∽,得到,即,所以的最小值为BE长度,利用勾股定理即可求出BE长度.【详解】(1)根据题意可知,当A、P、D三点共线时,最小,最小值.故答案为:.(2)连接CP,在CA上取一点D,使,则有,∵,∴∽,得,∴,故,仅当B、P、D三点共线时,的最小值.(3)延长OC到E,使,连接PE,OP,则,∵,∴∽,∴,∴,∴,仅当E、P、B三点共线时,,即的最小值为13.【点睛】本题考查圆的综合,勾股定理,相似三角形的判定和性质.根据阅读材料的思路构造出∽和∽是解题的关键.本题较难.【变式训练4】.如图1,在平面直角坐标系中,直线y=﹣5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B(1)求抛物线解析式及B点坐标;(2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积;(3)如图2,若P点是半径为2的⊙B上一动点,连接PC、PA,当点P运动到某一位置时,PC+PA的值最小,请求出这个最小值,并说明理由.【答案】(1)y=x2﹣6x+5,B(5,0);(2)当M(3,﹣4)时,四边形AMBC面积最大,最大面积等于18;(3)PC+PA的最小值为,理由详见解析.【分析】(1)由直线y=﹣5x+5求点A、C坐标,用待定系数法求抛物线解析式,进而求得点B坐标.(2)从x轴把四边形AMBC分成△ABC与△ABM;由点A、B、C坐标求△ABC面积;设点M横坐标为m,过点M作x轴的垂线段MH,则能用m表示MH的长,进而求△ABM的面积,得到△ABM面积与m的二次函数关系式,且对应的a值小于0,配方即求得m为何值时取得最大值,进而求点M坐标和四边形AMBC的面积最大值.(3)作点D坐标为(4,0),可得BD=1,进而有,再加上公共角∠PBD=∠ABP,根据两边对应成比例且夹角相等可证△PBD∽△ABP,得等于相似比,进而得PD=AP,所以当C、P、D在同一直线上时,PC+PA=PC+PD=CD最小.用两点间距离公式即求得CD的长.【详解】解:(1)直线y=﹣5x+5,x=0时,y=5∴C(0,5)y=﹣5x+5=0时,解得:x=1∴A(1,0)∵抛物线y=x2+bx+c经过A,C两点∴

解得:∴抛物线解析式为y=x2﹣6x+5当y=x2﹣6x+5=0时,解得:x1=1,x2=5∴B(5,0)(2)如图1,过点M作MH⊥x轴于点H∵A(1,0),B(5,0),C(0,5),∴AB=5﹣1=4,OC=5∴S△ABC=AB•OC=×4×5=10∵点M为x轴下方抛物线上的点,∴设M(m,m2﹣6m+5)(1<m<5)∴MH=|m2﹣6m+5|=﹣m2+6m﹣5∴S△ABM=AB•MH=×4(﹣m2+6m﹣5)=﹣2m2+12m﹣10=﹣2(m﹣3)2+8∴S四边形AMBC=S△ABC+S△ABM=10+[﹣2(m﹣3)2+8]=﹣2(m﹣3)2+18∴当m=3,即M(3,﹣4)时,四边形AMBC面积最大,最大面积等于18(3)如图2,在x轴上取点D(4,0),连接PD、CD,∴BD=5﹣4=1∵AB=4,BP=2,∴∵∠PBD=∠ABP,∴△PBD∽△ABP∴,∴PD=AP,∴PC+PA=PC+PD∴当点C、P、D在同一直线上时,PC+PA=PC+PD=CD最小∵CD=∴PC+PA的最小值为【点睛】此题主要考查二次函数综合,解题的关键是熟知二次函数的性质、圆的性质及相似三角形的判断与性质.三、课后训练1.如图,在Rt△ABC中,∠ACB=90°,CB=7,AC=9,以C为圆心、3为半径作⊙C,P为⊙C上一动点,连接AP、BP,则AP+BP的最小值为(

)A.7 B.5 C. D.【答案】B【详解】思路引领:如图,在CA上截取CM,使得CM=1,连接PM,PC,BM.利用相似三角形的性质证明MPPA,可得AP+BP=PM+PB≥BM,利用勾股定理求出BM即可解决问题.答案详解:如图,在CA上截取CM,使得CM=1,连接PM,PC,BM.∵PC=3,CM=1,CA=9,∴PC2=CM•CA,∴,∵∠PCM=∠ACP,∴△PCM∽△ACP,∴,∴PMPA,∴AP+BP=PM+PB,∵PM+PB≥BM,在Rt△BCM中,∵∠BCM=90°,CM=1,BC=7,∴BM5,∴AP+BP≥5,∴AP+BP的最小值为5.故选:B.2.如图所示,,半径为2的圆内切于.为圆上一动点,过点作、分别垂直于的两边,垂足为、,则的取值范围为.【答案】【分析】根据题意,本题属于动点最值问题-“阿氏圆”模型,首先作于,作于,如图所示,通过代换,将转化为,得到当与相切时,取得最大值和最小值,分两种情况,作出图形,数形结合解直角三角形即可得到相应最值,进而得到取值范围.【详解】解:作于,作于,如图所示:,,,,,,,,当与相切时,取得最大和最小,①连接,,,如图1所示:可得:四边形是正方形,,在中,,,在中,,,即;②连接,,,如图2所示:可得:四边形是正方形,,由上同理可知:在中,,,在中,,,即,.故答案为:.【点睛】本题考查动点最值模型-“阿氏圆”,难度较大,掌握解决动点最值问题的方法,熟记相关几何知识,尤其是圆的相关知识是解决问题的关键.3.如图,在中,点A、点在上,,,点在上,且,点是的中点,点是劣弧上的动点,则的最小值为.【答案】【分析】延长到,使得,连接,,利用相似三角形的性质证明,求的最小值问题转化为求的最小值.求出即可判断.【详解】解:延长到,使得,连接,.,,,,,,,,,,又在中,,,,,,的最小值为,故答案为:.【点睛】本题考查了相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.4.如图,在中,,以点B为圆心作圆B与相切,点P为圆B上任一动点,则的最小值是.【答案】【分析】作BH⊥AC于H,取BC的中点D,连接PD,如图,根据切线的性质得BH为⊙B的半径,再根据等腰直角三角形的性质得到BHAC,接着证明△BPD∽△BCP得到PDPC,所以PAPC=PA+PD,而PA+PD≥AD(当且仅当A、P、D共线时取等号),从而计算出AD得到PA的最小值.【详解】解:作BH⊥AC于H,取BC的中点D,连接PD,如图,∵AC为切线,∴BH为⊙B的半径,∵∠ABC=90°,AB=CB=2,∴ACBA=2,∴BHAC,∴BP,∵,,而∠PBD=∠CBP,∴△BPD∽△BCP,∴,∴PDPC,∴PAPC=PA+PD,而PA+PD≥AD(当且仅当A、P、D共线时取等号),而AD,∴PA+PD的最小值为,即PA的最小值为.故答案为:.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.解决问题的关键是利用相似比确定线段PDPC.也考查了等腰直角三角形的性质.5.如图,在△ABC中,∠ACB=90°,BC=12,AC=9,以点C为圆心,6为半径的圆上有一个动点D.连接AD、BD、CD,则2AD+3BD的最小值是.

【答案】【分析】如下图,在CA上取一点E,使得CE=4,先证△DCE∽△ACD,将转化为DE,从而求得的最小距离,进而得出2AD+3BD的最小值.【详解】如下图,在CA上取一点E,使得CE=4

∵AC=9,CD=6,CE=4∴∵∠ECD=∠ACD∴△DCE∽△ACD∴∴ED=在△EDB中,ED+DB≥EB∴ED+DB最小为EB,即ED+DB=EB∴在Rt△ECB中,EB=∴∴2AD+3DB=故答案为:.【点睛】本题考查求最值问题,解题关键是构造出△DCE∽△ACD.6.如图,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的一个动点,则PD﹣PC的最大值为.【答案】5【详解】分析:由PD−PC=PD−PG≤DG,当点P在DG的延长线上时,PD−PC的值最大,最大值为DG=5.详解:在BC上取一点G,使得BG=1,如图,∵,,∴,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴,∴PG=PC,当点P在DG的延长线上时,PD−PC的值最大,最大值为DG==5.故答案为5点睛:本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.7.如图,在Rt中,AB=AC=4,点E,F分别是AB,AC的中点,点P是扇形AEF的上任意一点,连接BP,CP,则BP+CP的最小值是.【答案】.【分析】在AB上取一点T,使得AT=1,连接PT,PA,CT.证明,推出==,推出PT=PB,推出PB+CP=CP+PT,根据PC+PT≥TC,求出CT即可解决问题.【详解】解:在AB上取一点T,使得AT=1,连接PT,PA,CT.∵PA=2.AT=1,AB=4,∴PA2=AT•AB,∴=,∵∠PAT=∠PAB,∴,∴==,∴PT=PB,∴PB+CP=CP+PT,∵PC+PT≥TC,在Rt中,∵∠CAT=90°,AT=1,AC=4,∴CT==,∴PB+PC≥,∴PB+PC的最小值为.故答案为.【点睛】本题考查等腰直角三角形的性质,三角形相似的判定与性质,勾股定理的应用,三角形的三边关系,圆的基本性质,掌握以上知识是解题的关键.8.如图,点A、B在上,且OA=OB=6,且OA⊥OB,点C是OA的中点,点D在OB上,且OD=4,动点P在上.求2PC+PD的最小值.【答案】【分析】连接OP,在射线OA上截取AE=6,连接PE.由题意易证,即得出,从而得出,由此可知当P、D、E三点共线时,最小,最小值为DE的长,最后在中利用勾股定理求出DE的长即可.【详解】如图,连接OP,在射线OA上截取AE=6,连接PE.∵C是OA的中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论