版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届吉林省白山市长白实验中学高三下第一次测试数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的离心率为,抛物线的焦点坐标为,若,则双曲线的渐近线方程为()A. B.C. D.2.“学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现日益成为老百姓了解国家动态、紧跟时代脉搏的热门。该款软件主要设有“阅读文章”、“视听学习”两个学习模块和“每日答题”、“每周答题”、“专项答题”、“挑战答题”四个答题模块。某人在学习过程中,“阅读文章”不能放首位,四个答题板块中有且仅有三个答题板块相邻的学习方法有()A.60 B.192 C.240 D.4323.定义在R上的函数,,若在区间上为增函数,且存在,使得.则下列不等式不一定成立的是()A. B.C. D.4.已知是双曲线的左、右焦点,若点关于双曲线渐近线的对称点满足(为坐标原点),则双曲线的渐近线方程为()A. B. C. D.5.在中,在边上满足,为的中点,则().A. B. C. D.6.阿基米德(公元前287年—公元前212年)是古希腊伟大的哲学家、数学家和物理学家,他和高斯、牛顿并列被称为世界三大数学家.据说,他自己觉得最为满意的一个数学发现就是“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”.他特别喜欢这个结论,要求后人在他的墓碑上刻着一个圆柱容器里放了一个球,如图,该球顶天立地,四周碰边,表面积为的圆柱的底面直径与高都等于球的直径,则该球的体积为()A. B. C. D.7.函数的图象为C,以下结论中正确的是()①图象C关于直线对称;②图象C关于点对称;③由y=2sin2x的图象向右平移个单位长度可以得到图象C.A.① B.①② C.②③ D.①②③8.已知是等差数列的前项和,若,,则()A.5 B.10 C.15 D.209.复数的共轭复数在复平面内所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③台体的体积公式).A.2寸 B.3寸 C.4寸 D.5寸11.已知集合,,,则的子集共有()A.个 B.个 C.个 D.个12.已知函数的图象向左平移个单位后得到函数的图象,则的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.(5分)某膳食营养科研机构为研究牛蛙体内的维生素E和锌、硒等微量元素(这些元素可以延缓衰老,还能起到抗癌的效果)对人体的作用,现从只雌蛙和只雄蛙中任选只牛蛙进行抽样试验,则选出的只牛蛙中至少有只雄蛙的概率是____________.14.已知随机变量服从正态分布,若,则_________.15.设函数满足,且当时,又函数,则函数在上的零点个数为___________.16.学校艺术节对同一类的,,,四件参赛作品,只评一件一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“或作品获得一等奖”;乙说:“作品获得一等奖”;丙说:“,两项作品未获得一等奖”;丁说:“作品获得一等奖”.若这四位同学中有且只有两位说的话是对的,则获得一等奖的作品是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)若对于任意实数,恒成立,求实数的范围;(2)当时,是否存在实数,使曲线:在点处的切线与轴垂直?若存在,求出的值;若不存在,说明理由.18.(12分)设数列的前n项和满足,,,(1)证明:数列是等差数列,并求其通项公式﹔(2)设,求证:.19.(12分)如图,在四棱锥P—ABCD中,四边形ABCD为平行四边形,BD⊥DC,△PCD为正三角形,平面PCD⊥平面ABCD,E为PC的中点.(1)证明:AP∥平面EBD;(2)证明:BE⊥PC.20.(12分)如图,四棱锥中,四边形是矩形,,,为正三角形,且平面平面,、分别为、的中点.(1)证明:平面;(2)求几何体的体积.21.(12分)已知不等式的解集为.(1)求实数的值;(2)已知存在实数使得恒成立,求实数的最大值.22.(10分)如图,四棱锥中,底面ABCD为菱形,平面ABCD,BD交AC于点E,F是线段PC中点,G为线段EC中点.Ⅰ求证:平面PBD;Ⅱ求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
求出抛物线的焦点坐标,得到双曲线的离心率,然后求解a,b关系,即可得到双曲线的渐近线方程.【详解】抛物线y2=2px(p>0)的焦点坐标为(1,0),则p=2,又e=p,所以e2,可得c2=4a2=a2+b2,可得:ba,所以双曲线的渐近线方程为:y=±.故选:A.【点睛】本题考查双曲线的离心率以及双曲线渐近线方程的求法,涉及抛物线的简单性质的应用.2、C【解析】
四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法.注意按“阅读文章”分类.【详解】四个答题板块中选三个捆绑在一起,和另外一个答题板块用插入法,由于“阅读文章”不能放首位,因此不同的方法数为.故选:C.【点睛】本题考查排列组合的应用,考查捆绑法和插入法求解排列问题.对相邻问题用捆绑法,不相邻问题用插入法是解决这类问题的常用方法.3、D【解析】
根据题意判断出函数的单调性,从而根据单调性对选项逐个判断即可.【详解】由条件可得函数关于直线对称;在,上单调递增,且在时使得;又,,所以选项成立;,比离对称轴远,可得,选项成立;,,可知比离对称轴远,选项成立;,符号不定,,无法比较大小,不一定成立.故选:.【点睛】本题考查了函数的基本性质及其应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.4、B【解析】
先利用对称得,根据可得,由几何性质可得,即,从而解得渐近线方程.【详解】如图所示:由对称性可得:为的中点,且,所以,因为,所以,故而由几何性质可得,即,故渐近线方程为,故选B.【点睛】本题考查了点关于直线对称点的知识,考查了双曲线渐近线方程,由题意得出是解题的关键,属于中档题.5、B【解析】
由,可得,,再将代入即可.【详解】因为,所以,故.故选:B.【点睛】本题考查平面向量的线性运算性质以及平面向量基本定理的应用,是一道基础题.6、C【解析】
设球的半径为R,根据组合体的关系,圆柱的表面积为,解得球的半径,再代入球的体积公式求解.【详解】设球的半径为R,根据题意圆柱的表面积为,解得,所以该球的体积为.故选:C【点睛】本题主要考查组合体的表面积和体积,还考查了对数学史了解,属于基础题.7、B【解析】
根据三角函数的对称轴、对称中心和图象变换的知识,判断出正确的结论.【详解】因为,又,所以①正确.,所以②正确.将的图象向右平移个单位长度,得,所以③错误.所以①②正确,③错误.故选:B【点睛】本小题主要考查三角函数的对称轴、对称中心,考查三角函数图象变换,属于基础题.8、C【解析】
利用等差通项,设出和,然后,直接求解即可【详解】令,则,,∴,,∴.【点睛】本题考查等差数列的求和问题,属于基础题9、D【解析】
由复数除法运算求出,再写出其共轭复数,得共轭复数对应点的坐标.得结论.【详解】,,对应点为,在第四象限.故选:D.【点睛】本题考查复数的除法运算,考查共轭复数的概念,考查复数的几何意义.掌握复数的运算法则是解题关键.10、B【解析】试题分析:根据题意可得平地降雨量,故选B.考点:1.实际应用问题;2.圆台的体积.11、B【解析】
根据集合中的元素,可得集合,然后根据交集的概念,可得,最后根据子集的概念,利用计算,可得结果.【详解】由题可知:,当时,当时,当时,当时,所以集合则所以的子集共有故选:B【点睛】本题考查集合的运算以及集合子集个数的计算,当集合中有元素时,集合子集的个数为,真子集个数为,非空子集为,非空真子集为,属基础题.12、A【解析】
首先求得平移后的函数,再根据求的最小值.【详解】根据题意,的图象向左平移个单位后,所得图象对应的函数,所以,所以.又,所以的最小值为.故选:A【点睛】本题考查三角函数的图象变换,诱导公式,意在考查平移变换,属于基础题型.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
记只雌蛙分别为,只雄蛙分别为,从中任选只牛蛙进行抽样试验,其基本事件为,共15个,选出的只牛蛙中至少有只雄蛙包含的基本事件为,共9个,故选出的只牛蛙中至少有只雄蛙的概率是.14、0.4【解析】
因为随机变量ζ服从正态分布,利用正态曲线的对称性,即得解.【详解】因为随机变量ζ服从正态分布所以正态曲线关于对称,所.【点睛】本题考查了正态分布曲线的对称性在求概率中的应用,考查了学生概念理解,数形结合,数学运算的能力,属于基础题.15、1【解析】
判断函数为偶函数,周期为2,判断为偶函数,计算,,画出函数图像,根据图像到答案.【详解】知,函数为偶函数,,函数关于对称。,故函数为周期为2的周期函数,且。为偶函数,,,当时,,,函数先增后减。当时,,,函数先增后减。在同一坐标系下作出两函数在上的图像,发现在内图像共有1个公共点,则函数在上的零点个数为1.故答案为:.【点睛】本题考查了函数零点问题,确定函数的奇偶性,对称性,周期性,画出函数图像是解题的关键.16、B【解析】
首先根据“学校艺术节对四件参赛作品只评一件一等奖”,故假设分别为一等奖,然后判断甲、乙、丙、丁四位同学的说法的正确性,即可得出结果.【详解】若A为一等奖,则甲、丙、丁的说法均错误,不满足题意;若B为一等奖,则乙、丙的说法正确,甲、丁的说法错误,满足题意;若C为一等奖,则甲、丙、丁的说法均正确,不满足题意;若D为一等奖,则乙、丙、丁的说法均错误,不满足题意;综上所述,故B获得一等奖.【点睛】本题属于信息题,可根据题目所给信息来找出解题所需要的条件并得出答案,在做本题的时候,可以采用依次假设为一等奖并通过是否满足题目条件来判断其是否正确.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)不存在实数,使曲线在点处的切线与轴垂直.【解析】
(1)分类时,恒成立,时,分离参数为,引入新函数,利用导数求得函数最值即可;(2),导出导函数,问题转化为在上有解.再用导数研究的性质可得.【详解】解:(1)因为当时,恒成立,所以,若,为任意实数,恒成立.若,恒成立,即当时,,设,,当时,,则在上单调递增,当时,,则在上单调递减,所以当时,取得最大值.,所以,要使时,恒成立,的取值范围为.(2)由题意,曲线为:.令,所以,设,则,当时,,故在上为增函数,因此在区间上的最小值,所以,当时,,,所以,曲线在点处的切线与轴垂直等价于方程在上有实数解.而,即方程无实数解.故不存在实数,使曲线在点处的切线与轴垂直.【点睛】本题考查不等式恒成立,考查用导数的几何意义,由导数几何把问题进行转化是解题关键.本题属于困难题.18、(1)证明见解析,;(2)证明见解析【解析】
(1)由,作差得到,进一步得到,再作差即可得到,从而使问题得到解决;(2),求和即可.【详解】(1),,两式相减:①用换,得②②—①,得,即,所以数列是等差数列,又,∴,,公差,所以.(II).【点睛】本题考查由与的关系求通项以及裂项相消法求数列的和,考查学生的计算能力,是一道容易题.19、(1)见解析(2)见解析【解析】
(1)连结AC交BD于点O,连结OE,利用三角形中位线可得AP∥OE,从而可证AP∥平面EBD;(2)先证明BD⊥平面PCD,再证明PC⊥平面BDE,从而可证BE⊥PC.【详解】证明:(1)连结AC交BD于点O,连结OE因为四边形ABCD为平行四边形∴O为AC中点,又E为PC中点,故AP∥OE,又AP平面EBD,OE平面EBD所以AP∥平面EBD
;(2)∵△PCD为正三角形,E为PC中点所以PC⊥DE因为平面PCD⊥平面ABCD,平面PCD平面ABCD=CD,又BD平面ABCD,BD⊥CD∴BD⊥平面PCD又PC平面PCD,故PC⊥BD又BDDE=D,BD平面BDE,DE平面BDE故PC⊥平面BDE又BE平面BDE,所以BE⊥PC.【点睛】本题主要考查空间位置关系的证明,线面平行一般转化为线线平行来证明,直线与直线垂直通常利用线面垂直来进行证明,侧重考查逻辑推理的核心素养.20、(1)见解析;(2)【解析】
(1)由题可知,根据三角形的中位线的性质,得出,根据矩形的性质得出,所以,再利用线面平行的判定定理即可证出平面;(2)由于平面平面,根据面面垂直的性质,得出平面,从而得出到平面的距离为,结合棱锥的体积公式,即可求得结果.【详解】解:(1)∵,分别为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年桥梁工程车使用与管理服务合同3篇
- 二零二四年度版权许可协议:摄影师授权使用其摄影作品2篇
- 2024年个人车辆租赁合同3篇
- 二零二四年度虚拟货币交易平台服务合同3篇
- 二零二四年度国际货物销售合同的支付方式及违约责任2篇
- 全新塔吊设备工地施工劳务承包2024年协议2篇
- 二零二四年度融资合作协议范本3篇
- 2024年春季汽车展览会场地租赁合同2篇
- 2024年银行服务与产品协议2篇
- 2024年度汽车销售合同(标的:新型电动汽车销售与服务)3篇
- 23《孟子》三章 《生于忧患死于安乐》公开课一等奖创新教学设计
- 《黏土火锅》幼儿园小学少儿美术教育绘画课件创意教程教案
- 《基础会计》教学课件-整套教程电子讲义
- 2025届重庆市新高考生物命题趋势分析及备考策略 课件
- 人教版四年级上册英语第一单元《Unit-1》测试试题
- Java面向对象程序设计 课件 项目8 飞机大战游戏
- 2024秋国开学习网《形势与政策》形考任务专题测验1-5答案
- 七年级上册信息技术工作计划和教学进度
- 站台货场租赁合同范本大全
- GB 3836.15-2024爆炸性环境第15部分:电气装置设计、选型、安装规范
- 5.3.4 方案决策问题 课件 2024-2025学年人教版七年级数学上册
评论
0/150
提交评论