版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南大附中2025届高三下学期联合考试数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,存在实数,使得,则的最大值为()A. B. C. D.2.函数的图象如图所示,为了得到的图象,可将的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位3.已知集合的所有三个元素的子集记为.记为集合中的最大元素,则()A. B. C. D.4.赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为边长得到的正方形是由个全等的直角三角形再加上中间的一个小正方形组成的,如图(1)),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设,若在大正六边形中随机取一点,则此点取自小正六边形的概率为()A. B.C. D.5.中国的国旗和国徽上都有五角星,正五角星与黄金分割有着密切的联系,在如图所示的正五角星中,以、、、、为顶点的多边形为正五边形,且,则()A. B. C. D.6.已知为坐标原点,角的终边经过点且,则()A. B. C. D.7.已知函数(,)的一个零点是,函数图象的一条对称轴是直线,则当取得最小值时,函数的单调递增区间是()A.() B.()C.() D.()8.若单位向量,夹角为,,且,则实数()A.-1 B.2 C.0或-1 D.2或-19.函数与在上最多有n个交点,交点分别为(,……,n),则()A.7 B.8 C.9 D.1010.如图是一个几何体的三视图,则这个几何体的体积为()A. B. C. D.11.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是()A. B. C. D.12.如图,平面与平面相交于,,,点,点,则下列叙述错误的是()A.直线与异面B.过只有唯一平面与平行C.过点只能作唯一平面与垂直D.过一定能作一平面与垂直二、填空题:本题共4小题,每小题5分,共20分。13.在的展开式中,常数项为________.(用数字作答)14.函数在的零点个数为________.15.已知关于的方程在区间上恰有两个解,则实数的取值范围是________16.已知双曲线:(,),直线:与双曲线的两条渐近线分别交于,两点.若(点为坐标原点)的面积为32,且双曲线的焦距为,则双曲线的离心率为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知凸边形的面积为1,边长,,其内部一点到边的距离分别为.求证:.18.(12分)设函数,是函数的导数.(1)若,证明在区间上没有零点;(2)在上恒成立,求的取值范围.19.(12分)如图,在四棱锥中,平面平面,.(Ⅰ)求证:平面;(Ⅱ)若锐二面角的余弦值为,求直线与平面所成的角.20.(12分)如图,在正四棱柱中,已知,.(1)求异面直线与直线所成的角的大小;(2)求点到平面的距离.21.(12分)已知函数,,且.(1)当时,求函数的减区间;(2)求证:方程有两个不相等的实数根;(3)若方程的两个实数根是,试比较,与的大小,并说明理由.22.(10分)如图,三棱台的底面是正三角形,平面平面,.(1)求证:;(2)若,求直线与平面所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
画出分段函数图像,可得,由于,构造函数,利用导数研究单调性,分析最值,即得解.【详解】由于,,由于,令,,在↗,↘故.故选:A【点睛】本题考查了导数在函数性质探究中的应用,考查了学生数形结合,转化划归,综合分析,数学运算的能力,属于较难题.2、C【解析】
根据正弦型函数的图象得到,结合图像变换知识得到答案.【详解】由图象知:,∴.又时函数值最大,所以.又,∴,从而,,只需将的图象向左平移个单位即可得到的图象,故选C.【点睛】已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求,一般用最高点或最低点求.3、B【解析】
分类讨论,分别求出最大元素为3,4,5,6的三个元素子集的个数,即可得解.【详解】集合含有个元素的子集共有,所以.在集合中:最大元素为的集合有个;最大元素为的集合有;最大元素为的集合有;最大元素为的集合有;所以.故选:.【点睛】此题考查集合相关的新定义问题,其本质在于弄清计数原理,分类讨论,分别求解.4、D【解析】
设,则,小正六边形的边长为,利用余弦定理可得大正六边形的边长为,再利用面积之比可得结论.【详解】由题意,设,则,即小正六边形的边长为,所以,,,在中,由余弦定理得,即,解得,所以,大正六边形的边长为,所以,小正六边形的面积为,大正六边形的面积为,所以,此点取自小正六边形的概率.故选:D.【点睛】本题考查概率的求法,考查余弦定理、几何概型等基础知识,考查运算求解能力,属于基础题.5、A【解析】
利用平面向量的概念、平面向量的加法、减法、数乘运算的几何意义,便可解决问题.【详解】解:.故选:A【点睛】本题以正五角星为载体,考查平面向量的概念及运算法则等基础知识,考查运算求解能力,考查化归与转化思想,属于基础题.6、C【解析】
根据三角函数的定义,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出结果.【详解】根据题意,,解得,所以,所以,所以.故选:C.【点睛】本题考查三角函数定义的应用和二倍角的正弦公式,考查计算能力.7、B【解析】
根据函数的一个零点是,得出,再根据是对称轴,得出,求出的最小值与对应的,写出即可求出其单调增区间.【详解】依题意得,,即,解得或(其中,).①又,即(其中).②由①②得或,即或(其中,,),因此的最小值为.因为,所以().又,所以,所以,令(),则().因此,当取得最小值时,的单调递增区间是().故选:B【点睛】此题考查三角函数的对称轴和对称点,在对称轴处取得最值,对称点处函数值为零,属于较易题目.8、D【解析】
利用向量模的运算列方程,结合向量数量积的运算,求得实数的值.【详解】由于,所以,即,,即,解得或.故选:D【点睛】本小题主要考查向量模的运算,考查向量数量积的运算,属于基础题.9、C【解析】
根据直线过定点,采用数形结合,可得最多交点个数,然后利用对称性,可得结果.【详解】由题可知:直线过定点且在是关于对称如图通过图像可知:直线与最多有9个交点同时点左、右边各四个交点关于对称所以故选:C【点睛】本题考查函数对称性的应用,数形结合,难点在于正确画出图像,同时掌握基础函数的性质,属难题.10、A【解析】
由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1.再由球与圆柱体积公式求解.【详解】由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1.则几何体的体积为.故选:.【点睛】本题主要考查由三视图求面积、体积,关键是由三视图还原原几何体,意在考查学生对这些知识的理解掌握水平.11、A【解析】
根据几何概率计算公式,求出中间小三角形区域的面积与大三角形面积的比值即可.【详解】在中,,,,由余弦定理,得,所以.所以所求概率为.故选A.【点睛】本题考查了几何概型的概率计算问题,是基础题.12、D【解析】
根据异面直线的判定定理、定义和性质,结合线面垂直的关系,对选项中的命题判断.【详解】A.假设直线与共面,则A,D,B,C共面,则AB,CD共面,与,矛盾,故正确.B.根据异面直线的性质知,过只有唯一平面与平行,故正确.C.根据过一点有且只有一个平面与已知直线垂直知,故正确.D.根据异面直线的性质知,过不一定能作一平面与垂直,故错误.故选:D【点睛】本题主要考查异面直线的定义,性质以及线面关系,还考查了理解辨析的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
的展开式的通项为,取计算得到答案.【详解】的展开式的通项为:,取得到常数项.故答案为:.【点睛】本题考查了二项式定理,意在考查学生的计算能力.14、【解析】
求出的范围,再由函数值为零,得到的取值可得零点个数.【详解】详解:由题可知,或解得,或故有3个零点.【点睛】本题主要考查三角函数的性质和函数的零点,属于基础题.15、【解析】
先换元,令,将原方程转化为,利用参变分离法转化为研究两函数的图像交点,观察图像,即可求出.【详解】因为关于的方程在区间上恰有两个解,令,所以方程在上只有一解,即有,直线与在的图像有一个交点,由图可知,实数的取值范围是,但是当时,还有一个根,所以此时共有3个根.综上实数的取值范围是.【点睛】本题主要考查学生运用转化与化归思想的能力,方程有解问题转化成两函数的图像有交点问题,是常见的转化方式.16、或【解析】
用表示出的面积,求得等量关系,联立焦距的大小,以及,即可容易求得,则离心率得解.【详解】联立解得.所以的面积,所以.而由双曲线的焦距为知,,所以.联立解得或故双曲线的离心率为或.故答案为:或.【点睛】本题考查双曲线的方程与性质,考查运算求解能力以及函数与方程思想,属中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、证明见解析【解析】
由已知,易得,所以利用柯西不等式和基本不等式即可证明.【详解】因为凸边形的面积为1,所以,所以(由柯西不等式得)(由均值不等式得)【点睛】本题考查利用柯西不等式、基本不等式证明不等式的问题,考查学生对不等式灵活运用的能力,是一道容易题.18、(1)证明见解析(2)【解析】
(1)先利用导数的四则运算法则和导数公式求出,再由函数的导数可知,函数在上单调递增,在上单调递减,而,,可知在区间上恒成立,即在区间上没有零点;(2)由题意可将转化为,构造函数,利用导数讨论研究其在上的单调性,由,即可求出的取值范围.【详解】(1)若,则,,设,则,,,故函数是奇函数.当时,,,这时,又函数是奇函数,所以当时,.综上,当时,函数单调递增;当时,函数单调递减.又,,故在区间上恒成立,所以在区间上没有零点.(2),由,所以恒成立,若,则,设,.故当时,,又,所以当时,,满足题意;当时,有,与条件矛盾,舍去;当时,令,则,又,故在区间上有无穷多个零点,设最小的零点为,则当时,,因此在上单调递增.,所以.于是,当时,,得,与条件矛盾.故的取值范围是.【点睛】本题主要考查导数的四则运算法则和导数公式的应用,以及利用导数研究函数的单调性和最值,涉及分类讨论思想和放缩法的应用,难度较大,意在考查学生的数学建模能力,数学运算能力和逻辑推理能力,属于较难题.19、(Ⅰ)详见解析;(Ⅱ).【解析】
(Ⅰ)由余弦定理解得,即可得到,由面面垂直的性质可得平面,即可得到,从而得证;(Ⅱ)在平面中,过点作于点,则平面,如图所示建立空间直角坐标系,设,其中,利用空间向量法得到二面角的余弦,即可得到的关系,从而得解;【详解】解:(Ⅰ)证明:在中,,解得,则,从而因为平面平面,平面平面所以平面,又因为平面,所以,因为,,平面,平面,所以平面;(Ⅱ)解:在平面中,过点作于点,则平面,如图所示建立空间直角坐标系,设,其中,则设平面的法向量为,则,即,令,则又平面的一个法向量,则从而,故则直线与平面所成的角为,大小为.【点睛】本题考查线面垂直的判定,面面垂直的性质定理的应用,利用空间向量法解决立体几何问题,属于中档题.20、(1);(2).【解析】
(1)建立空间坐标系,通过求向量与向量的夹角,转化为异面直线与直线所成的角的大小;(2)先求出面的一个法向量,再用点到面的距离公式算出即可.【详解】以为原点,所在直线分别为轴建系,设所以,,所以异面直线与直线所成的角的余弦值为,异面直线与直线所成的角的大小为.(2)因为,,设是面的一个法向量,所以有即,令,,故,又,所以点到平面的距离为.【点睛】本题主要考查向量法求异面直线所成角的大小和点到面的距离,意在考查学生的数学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高端酒店施工合同
- 心血管病医院专家聘用合同
- 外国营养师健康管理聘用合同
- 专业版解除劳动合同
- 耐烟雾木地板安装合同
- 银行内部安全监控指南
- 教育培训办公区改造施工协议
- 跨境电商项目招投标档案
- 商业大厦彩钢瓦屋顶安装合同
- 高档住宅区真石漆施工合同
- 中风患者便秘护理教学
- 期中测试卷-2024-2025学年统编版语文六年级上册
- 初中语文2024届中考修改病句选择题练习(共15道-附参考答案和解析)
- 中国大百科全书出版社 心理健康教育 五年级下册 15 成长中的我 教案
- 医院消防安全培训课件(完美版)
- 材料采购服务方案(技术方案)
- 工程竣工验收(消防查验)报告消防专项-全套表格
- 构建水利安全生产风险管控六项机制工作指导手册
- 2024年液化石油气库站工理论考试题库(含答案)
- 魏宁海超买超卖指标公式
- 第19章 药物制剂新技术课件
评论
0/150
提交评论