2025届肥西县高考冲刺押题(最后一卷)数学试卷含解析_第1页
2025届肥西县高考冲刺押题(最后一卷)数学试卷含解析_第2页
2025届肥西县高考冲刺押题(最后一卷)数学试卷含解析_第3页
2025届肥西县高考冲刺押题(最后一卷)数学试卷含解析_第4页
2025届肥西县高考冲刺押题(最后一卷)数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届肥西县高考冲刺押题(最后一卷)数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知平面向量,,,则实数x的值等于()A.6 B.1 C. D.2.在四边形中,,,,,,点在线段的延长线上,且,点在边所在直线上,则的最大值为()A. B. C. D.3.已知,是函数图像上不同的两点,若曲线在点,处的切线重合,则实数的最小值是()A. B. C. D.14.△ABC的内角A,B,C的对边分别为,已知,则为()A. B. C.或 D.或5.将函数的图像向右平移个单位长度,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数的图像,若为奇函数,则的最小值为()A. B. C. D.6.已知函数是定义在R上的奇函数,且满足,当时,(其中e是自然对数的底数),若,则实数a的值为()A. B.3 C. D.7.在钝角中,角所对的边分别为,为钝角,若,则的最大值为()A. B. C.1 D.8.“是函数在区间内单调递增”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件9.已知、分别为双曲线:(,)的左、右焦点,过的直线交于、两点,为坐标原点,若,,则的离心率为()A.2 B. C. D.10.已知偶函数在区间内单调递减,,,,则,,满足()A. B. C. D.11.已知集合,则等于()A. B. C. D.12.函数y=sin2x的图象可能是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,,则___________.14.已知复数z1=1﹣2i,z2=a+2i(其中i是虚数单位,a∈R),若z1•z2是纯虚数,则a的值为_____.15.已知实数满足,则的最大值为________.16.设,满足约束条件,则的最大值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某商场举行有奖促销活动,顾客购买每满元的商品即可抽奖一次.抽奖规则如下:抽奖者掷各面标有点数的正方体骰子次,若掷得点数大于,则可继续在抽奖箱中抽奖;否则获得三等奖,结束抽奖,已知抽奖箱中装有个红球与个白球,抽奖者从箱中任意摸出个球,若个球均为红球,则获得一等奖,若个球为个红球和个白球,则获得二等奖,否则,获得三等奖(抽奖箱中的所有小球,除颜色外均相同).若,求顾客参加一次抽奖活动获得三等奖的概率;若一等奖可获奖金元,二等奖可获奖金元,三等奖可获奖金元,记顾客一次抽奖所获得的奖金为,若商场希望的数学期望不超过元,求的最小值.18.(12分)设函数.(1)当时,求不等式的解集;(2)若对恒成立,求的取值范围.19.(12分)如图:在中,,,.(1)求角;(2)设为的中点,求中线的长.20.(12分)如图,在四面体中,.(1)求证:平面平面;(2)若,求四面体的体积.21.(12分)已知函数(1)求单调区间和极值;(2)若存在实数,使得,求证:22.(10分)的内角,,的对边分别为,,,已知的面积为.(1)求;(2)若,,求的周长.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

根据向量平行的坐标表示即可求解.【详解】,,,,即,故选:A【点睛】本题主要考查了向量平行的坐标运算,属于容易题.2、A【解析】

依题意,如图以为坐标原点建立平面直角坐标系,表示出点的坐标,根据求出的坐标,求出边所在直线的方程,设,利用坐标表示,根据二次函数的性质求出最大值.【详解】解:依题意,如图以为坐标原点建立平面直角坐标系,由,,,,,,,因为点在线段的延长线上,设,解得,所在直线的方程为因为点在边所在直线上,故设当时故选:【点睛】本题考查向量的数量积,关键是建立平面直角坐标系,属于中档题.3、B【解析】

先根据导数的几何意义写出在两点处的切线方程,再利用两直线斜率相等且纵截距相等,列出关系树,从而得出,令函数,结合导数求出最小值,即可选出正确答案.【详解】解:当时,,则;当时,则.设为函数图像上的两点,当或时,,不符合题意,故.则在处的切线方程为;在处的切线方程为.由两切线重合可知,整理得.不妨设则,由可得则当时,的最大值为.则在上单调递减,则.故选:B.【点睛】本题考查了导数的几何意义,考查了推理论证能力,考查了函数与方程、分类与整合、转化与化归等思想方法.本题的难点是求出和的函数关系式.本题的易错点是计算.4、D【解析】

由正弦定理可求得,再由角A的范围可求得角A.【详解】由正弦定理可知,所以,解得,又,且,所以或。故选:D.【点睛】本题主要考查正弦定理,注意角的范围,是否有两解的情况,属于基础题.5、C【解析】

根据三角函数的变换规则表示出,根据是奇函数,可得的取值,再求其最小值.【详解】解:由题意知,将函数的图像向右平移个单位长度,得,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数的图像,,因为是奇函数,所以,解得,因为,所以的最小值为.故选:【点睛】本题考查三角函数的变换以及三角函数的性质,属于基础题.6、B【解析】

根据题意,求得函数周期,利用周期性和函数值,即可求得.【详解】由已知可知,,所以函数是一个以4为周期的周期函数,所以,解得,故选:B.【点睛】本题考查函数周期的求解,涉及对数运算,属综合基础题.7、B【解析】

首先由正弦定理将边化角可得,即可得到,再求出,最后根据求出的最大值;【详解】解:因为,所以因为所以,即,,时故选:【点睛】本题考查正弦定理的应用,余弦函数的性质的应用,属于中档题.8、C【解析】,令解得当,的图像如下图当,的图像如下图由上两图可知,是充要条件【考点定位】考查充分条件和必要条件的概念,以及函数图像的画法.9、D【解析】

作出图象,取AB中点E,连接EF2,设F1A=x,根据双曲线定义可得x=2a,再由勾股定理可得到c2=7a2,进而得到e的值【详解】解:取AB中点E,连接EF2,则由已知可得BF1⊥EF2,F1A=AE=EB,设F1A=x,则由双曲线定义可得AF2=2a+x,BF1﹣BF2=3x﹣2a﹣x=2a,所以x=2a,则EF2=2a,由勾股定理可得(4a)2+(2a)2=(2c)2,所以c2=7a2,则e故选:D.【点睛】本题考查双曲线定义的应用,考查离心率的求法,数形结合思想,属于中档题.对于圆锥曲线中求离心率的问题,关键是列出含有中两个量的方程,有时还要结合椭圆、双曲线的定义对方程进行整理,从而求出离心率.10、D【解析】

首先由函数为偶函数,可得函数在内单调递增,再由,即可判定大小【详解】因为偶函数在减,所以在上增,,,,∴.故选:D【点睛】本题考查函数的奇偶性和单调性,不同类型的数比较大小,应找一个中间数,通过它实现大小关系的传递,属于中档题.11、C【解析】

先化简集合A,再与集合B求交集.【详解】因为,,所以.故选:C【点睛】本题主要考查集合的基本运算以及分式不等式的解法,属于基础题.12、D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

因为,所以,又,所以,则,所以.14、-1【解析】

由题意,令即可得解.【详解】∵z1=1﹣2i,z2=a+2i,∴,又z1•z2是纯虚数,∴,解得:a=﹣1.故答案为:﹣1.【点睛】本题考查了复数的概念和运算,属于基础题.15、【解析】

作出不等式组所表示的平面区域,将目标函数看作点与可行域的点所构成的直线的斜率,当直线过时,直线的斜率取得最大值,代入点A的坐标可得答案.【详解】画出二元一次不等式组所表示的平面区域,如下图所示,由得点,目标函数表示点与可行域的点所构成的直线的斜率,当直线过时,直线的斜率取得最大值,此时的最大值为.故答案为:.【点睛】本题考查求目标函数的最值,关键在于明确目标函数的几何意义,属于中档题.16、29【解析】

由约束条件作出可行域,化目标函数为以原点为圆心的圆,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【详解】由约束条件作出可行域如图:联立,解得,目标函数是以原点为圆心,以为半径的圆,由图可知,此圆经过点A时,半径最大,此时也最大,最大值为.所以本题答案为29.【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、;.【解析】

设顾客获得三等奖为事件,因为顾客掷得点数大于的概率为,顾客掷得点数小于,然后抽将得三等奖的概率为,求出;由题意可知,随机变量的可能取值为,,,相应求出概率,求出期望,化简得,由题意可知,,即,求出的最小值.【详解】设顾客获得三等奖为事件,因为顾客掷得点数大于的概率为,顾客掷得点数小于,然后抽将得三等奖的概率为,所以;由题意可知,随机变量的可能取值为,,,且,,,所以随机变量的数学期望,,化简得,由题意可知,,即,化简得,因为,解得,即的最小值为.【点睛】本题主要考查概率和期望的求法,属于常考题.18、(1)或;(2)或.【解析】试题分析:(1)根据绝对值定义将不等式化为三个不等式组,分别求解集,最后求并集(2)根据绝对值三角不等式得最小值,再解含绝对值不等式可得的取值范围.试题解析:(1)等价于或或,解得:或.故不等式的解集为或.(2)因为:所以,由题意得:,解得或.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.19、(1);(2)【解析】

(1)通过求出的值,利用正弦定理求出即可得角;(2)根据求出的值,由正弦定理求出边,最后在中由余弦定理即可得结果.【详解】(1)∵,∴.由正弦定理,即.得,∵,∴为钝角,为锐角,故.(2)∵,∴.由正弦定理得,即得.在中由余弦定理得:,∴.【点睛】本题主要考查了正弦定理和余弦定理在解三角形中的应用,考查三角函数知识的运用,属于中档题.20、(1)证明见解析;(2).【解析】

(1)取中点,连接,根据等腰三角形的性质得到,利用全等三角形证得,由此证得平面,进而证得平面平面.(2)由(1)知平面,即是四面体的面上的高,结合锥体体积公式,求得四面体的体积.【详解】(1)证明:如图,取中点,连接,由则,则,故故,平面.又平面,故平面平面(2)由(1)知平面,即是四面体的面上的高,且.在中,,由勾股定理易知故四面体的体积【点睛】本小题主要考查面面垂直的证明,考查锥体体积计算,考查空间想象能力和逻辑推理能力,属于中档题.21、(1)时,函数单调递增,,函数单调递减,;(2)见解析【解析】

(1)求出函数的定义域与导函数,利用导数求函数的单调区间,即可得到函数的极值;(2)易得且,要证明,即证,即证,即对恒成立,构造函数,,利用导数研究函数的单调性与最值,即可得证;【详解】解:(1)因为定义域为,所以,时,,即在和上单调递增,当时,,即函数在单调递减,所以在处取得极小值,在处取得极大值;,;(2)易得,要证明,即证,即证即证对恒成立,令,,则令,解得,即在上单调递增;令,解得,即在上单调递减;则在取得极小值,也就是最小值,从而结论得证.【点睛】本题考查利用导数研究函数的单调性与极值,利用导数证明不等式,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论