版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届北京市朝阳区市级名校高考冲刺押题(最后一卷)数学试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知全集为,集合,则()A. B. C. D.2.函数的图象在点处的切线为,则在轴上的截距为()A. B. C. D.3.某四棱锥的三视图如图所示,该几何体的体积是()A.8 B. C.4 D.4.已知双曲线的一条渐近线为,圆与相切于点,若的面积为,则双曲线的离心率为()A. B. C. D.5.若数列为等差数列,且满足,为数列的前项和,则()A. B. C. D.6.设,均为非零的平面向量,则“存在负数,使得”是“”的A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件7.是平面上的一定点,是平面上不共线的三点,动点满足,,则动点的轨迹一定经过的()A.重心 B.垂心 C.外心 D.内心8.已知函数的图象如图所示,则可以为()A. B. C. D.9.已知为定义在上的奇函数,且满足当时,,则()A. B. C. D.10.已知纯虚数满足,其中为虚数单位,则实数等于()A. B.1 C. D.211.已知函数,,且在上是单调函数,则下列说法正确的是()A. B.C.函数在上单调递减 D.函数的图像关于点对称12.已知六棱锥各顶点都在同一个球(记为球)的球面上,且底面为正六边形,顶点在底面上的射影是正六边形的中心,若,,则球的表面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,若方程的解为,(),则_______;_______.14.曲线y=e-5x+2在点(0,3)处的切线方程为________.15.双曲线的左右顶点为,以为直径作圆,为双曲线右支上不同于顶点的任一点,连接交圆于点,设直线的斜率分别为,若,则_____.16.在平面直角坐标系中,曲线上任意一点到直线的距离的最小值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C的离心率为且经过点(1)求椭圆C的方程;(2)过点(0,2)的直线l与椭圆C交于不同两点A、B,以OA、OB为邻边的平行四边形OAMB的顶点M在椭圆C上,求直线l的方程.18.(12分)已知函数.(1)求不等式的解集;(2)若不等式在上恒成立,求实数的取值范围.19.(12分)已知关于的不等式有解.(1)求实数的最大值;(2)若,,均为正实数,且满足.证明:.20.(12分)某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数x与烧开一壶水所用时间y的一组数据,且作了一定的数据处理(如表),得到了散点图(如图).表中,.(1)根据散点图判断,与哪一个更适宜作烧水时间y关于开关旋钮旋转的弧度数x的回归方程类型?(不必说明理由)(2)根据判断结果和表中数据,建立y关于x的回归方程;(3)若旋转的弧度数x与单位时间内煤气输出量t成正比,那么x为多少时,烧开一壶水最省煤气?附:对于一组数据,,,…,,其回归直线的斜率和截距的最小二乘估计分别为,.21.(12分)等差数列中,.(1)求的通项公式;(2)设,记为数列前项的和,若,求.22.(10分)如图,正方形是某城市的一个区域的示意图,阴影部分为街道,各相邻的两红绿灯之间的距离相等,处为红绿灯路口,红绿灯统一设置如下:先直行绿灯30秒,再左转绿灯30秒,然后是红灯1分钟,右转不受红绿灯影响,这样独立的循环运行.小明上学需沿街道从处骑行到处(不考虑处的红绿灯),出发时的两条路线()等可能选择,且总是走最近路线.(1)请问小明上学的路线有多少种不同可能?(2)在保证通过红绿灯路口用时最短的前提下,小明优先直行,求小明骑行途中恰好经过处,且全程不等红绿灯的概率;(3)请你根据每条可能的路线中等红绿灯的次数的均值,为小明设计一条最佳的上学路线,且应尽量避开哪条路线?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
对于集合,求得函数的定义域,再求得补集;对于集合,解得一元二次不等式,再由交集的定义求解即可.【详解】,,.故选:D【点睛】本题考查集合的补集、交集运算,考查具体函数的定义域,考查解一元二次不等式.2、A【解析】
求出函数在处的导数后可得曲线在处的切线方程,从而可求切线的纵截距.【详解】,故,所以曲线在处的切线方程为:.令,则,故切线的纵截距为.故选:A.【点睛】本题考查导数的几何意义以及直线的截距,注意直线的纵截距指直线与轴交点的纵坐标,因此截距有正有负,本题属于基础题.3、D【解析】
根据三视图知,该几何体是一条垂直于底面的侧棱为2的四棱锥,画出图形,结合图形求出底面积代入体积公式求它的体积.【详解】根据三视图知,该几何体是侧棱底面的四棱锥,如图所示:结合图中数据知,该四棱锥底面为对角线为2的正方形,高为PA=2,∴四棱锥的体积为.故选:D.【点睛】本题考查由三视图求几何体体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.属于中等题.4、D【解析】
由圆与相切可知,圆心到的距离为2,即.又,由此求出的值,利用离心率公式,求出e.【详解】由题意得,,,.故选:D.【点睛】本题考查了双曲线的几何性质,直线与圆相切的性质,离心率的求法,属于中档题.5、B【解析】
利用等差数列性质,若,则求出,再利用等差数列前项和公式得【详解】解:因为,由等差数列性质,若,则得,.为数列的前项和,则.故选:.【点睛】本题考查等差数列性质与等差数列前项和.(1)如果为等差数列,若,则.(2)要注意等差数列前项和公式的灵活应用,如.6、B【解析】
根据充分条件、必要条件的定义进行分析、判断后可得结论.【详解】因为,均为非零的平面向量,存在负数,使得,所以向量,共线且方向相反,所以,即充分性成立;反之,当向量,的夹角为钝角时,满足,但此时,不共线且反向,所以必要性不成立.所以“存在负数,使得”是“”的充分不必要条件.故选B.【点睛】判断p是q的什么条件,需要从两方面分析:一是由条件p能否推得条件q;二是由条件q能否推得条件p,定义法是判断充分条件、必要条件的基本的方法,解题时注意选择恰当的方法判断命题是否正确.7、B【解析】
解出,计算并化简可得出结论.【详解】λ(),∴,∴,即点P在BC边的高上,即点P的轨迹经过△ABC的垂心.故选B.【点睛】本题考查了平面向量的数量积运算在几何中的应用,根据条件中的角计算是关键.8、A【解析】
根据图象可知,函数为奇函数,以及函数在上单调递增,且有一个零点,即可对选项逐个验证即可得出.【详解】首先对4个选项进行奇偶性判断,可知,为偶函数,不符合题意,排除B;其次,在剩下的3个选项,对其在上的零点个数进行判断,在上无零点,不符合题意,排除D;然后,对剩下的2个选项,进行单调性判断,在上单调递减,不符合题意,排除C.故选:A.【点睛】本题主要考查图象的识别和函数性质的判断,意在考查学生的直观想象能力和逻辑推理能力,属于容易题.9、C【解析】
由题设条件,可得函数的周期是,再结合函数是奇函数的性质将转化为函数值,即可得到结论.【详解】由题意,,则函数的周期是,所以,,又函数为上的奇函数,且当时,,所以,.故选:C.【点睛】本题考查函数的周期性,由题设得函数的周期是解答本题的关键,属于基础题.10、B【解析】
先根据复数的除法表示出,然后根据是纯虚数求解出对应的的值即可.【详解】因为,所以,又因为是纯虚数,所以,所以.故选:B.【点睛】本题考查复数的除法运算以及根据复数是纯虚数求解参数值,难度较易.若复数为纯虚数,则有.11、B【解析】
根据函数,在上是单调函数,确定,然后一一验证,A.若,则,由,得,但.B.由,,确定,再求解验证.C.利用整体法根据正弦函数的单调性判断.D.计算是否为0.【详解】因为函数,在上是单调函数,所以,即,所以,若,则,又因为,即,解得,而,故A错误.由,不妨令,得由,得或当时,,不合题意.当时,,此时所以,故B正确.因为,函数,在上是单调递增,故C错误.,故D错误.故选:B【点睛】本题主要考查三角函数的性质及其应用,还考查了运算求解的能力,属于较难的题.12、D【解析】
由题意,得出六棱锥为正六棱锥,求得,再结合球的性质,求得球的半径,利用表面积公式,即可求解.【详解】由题意,六棱锥底面为正六边形,顶点在底面上的射影是正六边形的中心,可得此六棱锥为正六棱锥,又由,所以,在直角中,因为,所以,设外接球的半径为,在中,可得,即,解得,所以外接球的表面积为.故选:D.【点睛】本题主要考查了正棱锥的几何结构特征,以及外接球的表面积的计算,其中解答中熟记几何体的结构特征,熟练应用球的性质求得球的半径是解答的关键,着重考查了空间想象能力,以及推理与计算能力,属于中档试题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
求出在上的对称轴,依据对称性可得的值;由可得,依据可求出的值.【详解】解:令,解得因为,所以关于对称.则.由,则由可知,,又因为,所以,则,即故答案为:;.【点睛】本题考查了三角函数的对称轴,考查了诱导公式,考查了同角三角函数的基本关系.本题的易错点在于没有正确判断的取值范围,导致求出.在求的对称轴时,常用整体代入法,即令进行求解.14、.【解析】
先利用导数求切线的斜率,再写出切线方程.【详解】因为y′=-5e-5x,所以切线的斜率k=-5e0=-5,所以切线方程是:y-3=-5(x-0),即y=-5x+3.故答案为y=-5x+3.【点睛】(1)本题主要考查导数的几何意义和函数的求导,意在考查学生对这些知识的掌握水平和分析推理能力.(2)函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是15、【解析】
根据双曲线上的点的坐标关系得,交圆于点,所以,建立等式,两式作商即可得解.【详解】设,交圆于点,所以易知:即.故答案为:【点睛】此题考查根据双曲线上的点的坐标关系求解斜率关系,涉及双曲线中的部分定值结论,若能熟记常见二级结论,此题可以简化计算.16、【解析】
解法一:曲线上任取一点,利用基本不等式可求出该点到直线的距离的最小值;解法二:曲线函数解析式为,由求出切点坐标,再计算出切点到直线的距离即可所求答案.【详解】解法一(基本不等式):在曲线上任取一点,该点到直线的距离为,当且仅当时,即当时,等号成立,因此,曲线上任意一点到直线距离的最小值为;解法二(导数法):曲线的函数解析式为,则,设过曲线上任意一点的切线与直线平行,则,解得,当时,到直线的距离;当时,到直线的距离.所以曲线上任意一点到直线的距离的最小值为.故答案为:.【点睛】本题考查曲线上一点到直线距离最小值的计算,可转化为利用切线与直线平行来找出切点,转化为切点到直线的距离,也可以设曲线上的动点坐标,利用基本不等式法或函数的最值进行求解,考查分析问题和解决问题的能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)根据椭圆的离心率、椭圆上点的坐标以及列方程,由此求得,进而求得椭圆的方程.(2)设出直线的方程,联立直线的方程和椭圆的方程,写出韦达定理.根据平行四边形的性质以及向量加法的几何意义得到,由此求得点的坐标,将的坐标代入椭圆方程,化简后可求得直线的斜率,由此求得直线的方程.【详解】(1)由椭圆的离心率为,点在椭圆上,所以,且解得,所以椭圆的方程为.(2)显然直线的斜率存在,设直线的斜率为,则直线的方程为,设,由消去得,所以,由已知得,所以,由于点都在椭圆上,所以,展开有,又,所以,经检验满足,故直线的方程为.【点睛】本小题主要考查根据椭圆的离心率和椭圆上一点的坐标求椭圆方程,考查直线和椭圆的位置关系,考查运算求解能力,属于中档题.18、(1);(2)【解析】
(1)分类讨论去绝对值号,即可求解;(2)原不等式可转化为在R上恒成立,分别求函数与的最小值,根据能同时成立,可得的最小值,即可求解.【详解】(1)①当时,不等式可化为,得,无解;②当-2≤x≤1时,不等式可化为得x>0,故0<x≤1;③当x>1时,不等式可化为,得x<2,故1<x<2.综上,不等式的解集为(2)由题意知在R上恒成立,所以令,则当时,又当时,取得最小值,且又所以当时,与同时取得最小值.所以所以,即实数的取值范围为【点睛】本题主要考查了含绝对值不等式的解法,分类讨论,函数的最值,属于中档题.19、(1);(2)见解析【解析】
(1)由题意,只需找到的最大值即可;(2),构造并利用基本不等式可得,即.【详解】(1),∴的最大值为4.关于的不等式有解等价于,(ⅰ)当时,上述不等式转化为,解得,(ⅱ)当时,上述不等式转化为,解得,综上所述,实数的取值范围为,则实数的最大值为3,即.(2)证明:根据(1)求解知,所以,又∵,,,,,当且仅当时,等号成立,即,∴,所以,.【点睛】本题考查绝对值不等式中的能成立问题以及综合法证明不等式问题,是一道中档题.20、(1)更适宜(2)(3)x为2时,烧开一壶水最省煤气【解析】
(1)根据散点图是否按直线型分布作答;(2)根据回归系数公式得出y关于的线性回归方程,再得出y关于x的回归方程;(3)利用基本不等式得出煤气用量的最小值及其成立的条件.【详解】(1)更适宜作烧水时间y关于开关旋钮旋转的弧度数x的回归方程类型.(2)由公式可得:,,所以所求回归方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度放心签工程车租赁合同示范4篇
- 二零二四年环境监测设备购销合同2篇
- 二零二四年度房地产开发商与合作方之间的土地开发合同
- 2024年度股权转让合同标的及受让方的权利与义务3篇
- 租赁合同解除通知书
- 二零二四年度融资租赁合同范本出租方权益保障2篇
- 2024版5G网络覆盖优化服务合同3篇
- 商铺租赁合同利于承租方2024年度权益实现3篇
- 二零二四年度物流服务合同标的及服务标准具体规定3篇
- 农村生活垃圾清运合同
- 人工智能技术应用专业调研报告
- 《中华民族共同体概论》考试复习题库(含答案)
- 不锈钢栏杆施工方案
- 液压管道施工方案(完整版)
- 皮肤生理学及皮肤问题
- 翰伯特的分裂人格—对电影《洛丽塔》(1997)的分析(英文)
- 人教部编版二年级数学上册《总复习(全章)》PPT教学课件
- 低压配电柜操作规程1
- 《美团外卖商家运营》ppt课件
- 员工档案表范本
- 归档文件整理规则DA/T22—2015
评论
0/150
提交评论