




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1页/共1页2024北京五中高三(上)期中数学班级__________姓名__________学号__________成绩__________一.选择题(共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)(1)已知集合,若,则集合可以是(A) (B) (C) (D)(2)若直线与直线平行,则实数的值为(A)0 (B) (C)1 (D)或1(3)曲线是双曲线,则“的方程是”是“的渐近线方程为”的(A)充分不必要条件 (B)必要不充分条件(C)充分必要条件 (D)既不充分也不必要条件(4)已知函数,设,,,则,,的大小关系是(A) (B) (C) (D)(5)已知两点,,点是圆上任意一点,则面积的最小值是(A)8 (B)6 (C) (D)4(6)已知抛物线的焦点为,准线为,点在上,过点作准线的垂线交准线于,若,则(A) (B) (C) (D)(7)中国古代数学的瑰宝《九章算术》中记载了一种称为“曲池”的几何体,该几何体为上、下底面均为扇环形的柱体(扇环是指圆环被扇形截得的部分).现有一个如下图所示的“曲池”,其高为,底面,底面扇环所对的圆心角为,长度为长度的3倍,且线段,则该“曲池”的体积为(A) (B)5π (C) (D)(8)在直角三角形中,,,,点在斜边的中线上,则的取值范围(A) (B) (C) (D)(9)金针菇采摘后会很快失去新鲜度,甚至腐烂,所以超市销售金针菇时需要采取保鲜膜封闭保存.已知金针菇失去的新鲜度与其采摘后时间(天)满足的函数解析式为.若采摘后1天,金针菇失去的新鲜度为;若采摘后3天,金针菇失去的新鲜度为80%.现在金针菇失去的新鲜度为,则采摘后的天数为(结果保留一位小数,)(A)1.5 (B)1.8 (C)2.0 (D)2.1(10)已知定点,,若点在圆上运动,则的最小值为(A) (B)6 (C) (D)二.填空题(共5小题,每小题5分,共25分)(11)复数的共轭复数__________.(12)已知为正方形,若椭圆与双曲线都以、为焦点,且图像都过、点,则椭圆的离心率为__________,双曲线的离心率为__________.(13)在中,,,点在边上,,,则_______;的面积为__________.(14)已知函数,,,其中表示,中最大的数.若,则__________;若对恒成立,则的取值范围是__________.(15)已知函数.给出下列四个结论:①过点存在1条直线与曲线相切;②过点存在2条直线与曲线相切;③过点存在3条直线与曲线相切;④过点存在3条直线与曲线相切时,的取值范围是.其中,正确结论的序号是__________.三.解答题(共6小题,共85分)(16)(本小题14分)如图,在直三棱柱中,,,,点是线段的中点.(I)求证:;(II)试求二面角的余弦值;(III)求点到平面的距离.(17)(本小题13分)设过点,且一个周期的图象(原点,最高点,最低点)如图所示:(I)求,;(II)再从以下三个条件中任选其一,使函数唯一确定,并求的单调递增区间.条件①:;条件②:;条件③:.(18)(本小题13分)自2022北京冬奥会以来,花样滑冰项目引起了广泛关注.选手们在冰上起舞,做出步法、旋转、跳跃等技术动作.“技术动作分”由“基础分”和“执行分”相加得到.不同的技术动作,其“基础分”也不同,其中四个跳跃动作,,,的“基础分”如表1所示.跳跃动作4T4S4F4Lz基础分9.59.711.011.5表1选手表演完,得到相应动作的“执行分”.把“执行分”为非负值的跳跃动作记为“成功”,否则记为“失败”.表2为某选手在上一赛季各跳跃动作的“技术动作分”.4T12.0411.224.759.069.9711.6310.984S10.9810.5711.324.859.5112.074F13.695.5014.0212.924Lz13.5414.2311.218.3811.87表2假设用频率估计概率,且选手每个跳跃动作是否“成功”相互独立.(I)从该选手上一赛季所有动作中任选一次,估计这次跳跃为“成功”的概率;(II)若该选手在本赛季中,计划完成,,这三个动作,且每个动作只完成一次.将这三个动作中成功的跳跃个数记为,求的分布列和数学期望;(III)在本赛季中,从四个跳跃动作,,,中选出三个,使得该选手这三个动作中“成功”的跳跃个数的期望最大,请直接写出这三个动作的名称.(19)(本小题15分)已知函数,其中.(I)当时,求曲线在点处的切线方程;(II)求的单调区间;(III)当且时,判断与的大小,并说明理由.(20)(本小题15分)设椭圆,且离心率为,过点的直线与椭圆交于,两点,当直线经过椭圆中心时,.(I)求椭圆的方程;(II)已知点,直线和直线分别与轴交于,,与轴交于,,若,求直线的斜率.(21)(本小题15分)设正整数数列满足.(1)若,请写出所有可能的取值;(2)记集合,且不是5的倍数,求证:;(3)存在常数,对于都有,求所有可能的取值.
参考答案一.选择题12345678910DBACDBDABA二.填空题11.12.,13.,14.,.15.①②③三.解答题16.【答案】解:(1)证明:在中,,,,,,平面,平面,,又,,平面,平面,又平面,. ……5分(2)由(1)可知,平面,,平面,所以,,又,以为原点,以,,为坐标轴建立空间直角坐标系,如图所示,则,,,,,,,,平面,是平面的一个法向量,设平面的法向量为,则,即,解得,令可得,,,由图形可知二面角为锐二面角,二面角的余弦值为. …11分(3)由(2)可知,,设与平面所成角为,则,到平面的距离为. …14分(17)解:(I)过结合图象,有:则由,有所以, 【5分】(II)选择条件①则故令,有,所以单调递增区间为, 【13分】选择条件②则由,有故以下同①选择条件(3),由,有故以下同①(18)(1)(2)分布列见解析,数学期望为(3)4T,4S,4F【分析】(1)根据题意,结合表格的数据,结合古典概型的概率公式代入计算,即可得到结果;(2)根据题意,由条件可得的所有可能取值为0,1,2,3,然后分别计算对应的概率,即可得到分布列,再由期望的计算公式即可得到结果.(3)根据题意,结合表格中的数据即可得到结果.【详解】(1)根据题中数据,该选手上一赛季7个4T动作中,有5个跳跃为“成功”,所以从该选手上一赛季所有动作中任选一次,这次跳跃“成功”的概率可以估计为. …4分(2)同(1)从该选手上一赛季所有,动作中分别任选一次,这次跳跃“成功”的概率分别可以估计为,,的所有可能取值为0,1,2,3.,,,.所以随机变量的分布列为:0123所以. …10分(3)由表格可知,动作成功的概率为,失败的概率为,动作成功的概率为,失败的概率为,动作成功的概率为,失败的概率为,动作成功的概率为,失败的概率为,由可知,选,,. …13分(19)解:(1)当时,;;而,;故曲线在点处的切线方程为,即. …4分(2)的定义域为,且;令,得.当变化时,与的变化情况如下表:﹣﹣0+单调递减单调递减极小值单调递增所以的单调递增区间为;单调递减区间为和; …9分(3)当且时,,证明如下:令,则.设,则.所以当时,;当时,.所以在上单调递减,在(上单调递增.从而,即,所以的单调递增区间为和(.当时,,即;当时,,即.综上,当且时,. …15分(20)解:(I),所以; …5分(II)①当直线的方程为时,显然,;直线的方程为,所以;直线的方程为,所以;此时点与点重合,点与点重合,易知;②设直线,,,,即,也即或,;,;,;直线,直线令,,令,,则即也即则,,斜率为;综上,直线的斜率为0或. …15分(21)(1),, …4分(2)设中最小数为,,①当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 药品安全教学课件
- 2025年市场洞察:功能性食品消费需求变化与产品创新路径解析
- 2025年医药流通供应链药品供应链金融创新趋势深度研究报告
- 2000-2020年甘南州土地利用变化特征及其驱动力分析
- 2025年执业药师之药事管理与法规过关检测试卷A卷附答案
- 环境金融与投资分析重点基础知识点归纳
- 环境健康统计学重点基础知识点归纳
- 神经科护理专业知识
- 中式快餐文化大解密
- 工程造价管理中的BIM应用实例
- 《士兵突击》课件
- 接触网施工计算课件
- 年产120万吨氧化铝拜尔法生产高压溶出工艺设计
- 雨棚棚盖检验批质量验收记录表
- DB14T 1049.1-2020 山西省用水定额 第1部分:农业用水定额
- 医院感染监测清单
- 医疗废物管理相关法律、法规介绍
- 手把手教华为PTN设备业务配置
- 工程施工安全保证体系新版
- 政审在校证明
- 燕房线电缆技术规范
评论
0/150
提交评论