《相交线与平行线》复习课件1_第1页
《相交线与平行线》复习课件1_第2页
《相交线与平行线》复习课件1_第3页
《相交线与平行线》复习课件1_第4页
《相交线与平行线》复习课件1_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第5章相交线与平行线复习知识结构相交线两条直线相交对顶角对顶角相等垂线及其性质点到直线的距离两条直线被第三条直线所截同位角、内错角、同旁内角平行线平行公理判定性质1.互为邻补角:两条直线相交所构成的四了角中,有公共顶点且有一条公共边的两个角是邻补角。如图(1)122.对顶角:(1)两条直线相交所构成的四个角中,(1)

有公共顶点但没有公共边的两个角是对顶角。如图(2).(2)1234(2)一个角的两边分别是另一个角的两边的反向延长线,这两个角是对顶角。3.邻补角的性质:

同角的补角相等。4.对顶角性质:对顶角相等。两个特征:(1)具有公共顶点;(2)角的两边互为反向延长线。n条直线相交于一点,就有n(n-1)对对顶角。※相交※1.直线AB、CD相交与于O,图中有几对对顶角?邻补角?当一个角确定了,另外三个角的大小确定了吗?OABCD12342.直线AB、CD、EF相交与于O,图中有几对对顶角?∠AOC的对顶角是_______∠COF的对顶角是________∠AOC的邻补角是____

。∠EOD的邻补角是_______

。∠BOD∠DOE∠COB,∠AOD∠DOF,∠COEABCDO在解决与角的计算有关的问题时,经常用到代数方法。例2.已知直线AB、CD、EF相交于点O,OABCDEF1.垂线的定义:

两条直线相交,所构成的四个角中,有一个角是时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线。它们的交点叫垂足。2.垂线的性质:(1)过一点有且只有一条直线与已知直线垂直。性质(2):直线外一点与直线上各点连结的所有线段中,垂线段最短。简称:垂线段最短。3.点到直线的距离:

从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。4.如遇到线段与线段,线段与射线,射线与射线,线段或射线与直线垂直时,特指它们所在的直线互相垂直。5.垂线是直线,垂线段特指一条线段是图形,点到直线距离是指垂线段的长度,是指一个数量,是有单位的。你能量出C到AB的距离,B到AC的距离,A到BC的距离吗?A

DCB

E

F拓展应用

如图:要把水渠中的水引到水池C中,在渠岸的什么地方开沟,水沟的长度才能最短?请画出图来,并说明理由。C∟理由:垂线段最短┓ABCDOE此题需要正确地应用、对顶角、邻补角、垂直的概念和性质。OADCB由垂直先找到的角,再根据角之间的关系求解。平行线的概念:在同一平面内,不相交的两条直线叫做平行线。2.两直线的位置关系:在同一平面内,两直线的位置关系只有两种:(1)相交;(2)平行。3.平行线的基本性质:(1)平行公理(平行线的存在性和唯一性)

经过直线外一点,有且只有一条直线与已知直线平行。

(2)推论(平行线的传递性)

如果两条直线都和第三条直线平行,

那么这两条直线也互相平行。4.同位角、内错角、同旁内角的概念同位角、内错角、同旁内角,指的是一条直线分别与两条直线相交构成的八个角中,不共顶点的角之间的特殊位置关系。它们与对顶角、邻补角一样,总是成对存在着的。

同位角的位置特征是:

(1)在截线的同旁,(2)被截两直线的同方向。内错角的位置特征是:

(1)在截线的两旁,(2)在被截两直线之间。同旁内角的位置特征是:

(1)在截线的同旁,(2)在被截两直线之间。判定两直线平行的方法有三种:(1)定义法;在同一平面内不相交的两条直线是平行线。(2)传递法;两条直线都和第三条直线平行,这两条直线也平行。(3)三种角判定(3种方法):

同位角相等,两直线平行。

内错角相等,两直线平行。

同旁内角互补,两直线平行。在这五种方法中,定义一般不常用。读下列语句,并画出图形点p是直线AB外的一点,直线CD经过点P,且与直线AB平行;直线AB、CD是相交直线,点P是直线AB外的一点,直线EF经过点P与直线AB平行,与直线CD交于E..PABCDCDABP.EF∠1和∠2不是同位角,练一练

如图中的∠1和∠2是同位角吗?为什么?1212∵∠1和∠2无一边共线。∠1和∠2是同位角,∵∠1和∠2有一边共线、同向且不共顶点。如图:直线a、b被直线l截的8个角中同位角:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8.

内错角:∠3与∠5,∠4与∠6.同旁内角:∠4与∠5,

∠3与∠6.

14328765balABDCFE123456789101112练一练(1)∠1和∠9是由直线

被直线

所截成的

角;

(2)∠6和∠12是由直线

被直线

所截成的

角;

(3)∠4和∠6是由直线

被直线

所截成的

角;

(4)由直线AB、CD被直线EF

所截成的同位角有

;(5)∠7和∠12是

角;在判断两个角时一定要先知道由哪两条直线被哪条直线所截呦!ABCDEF同位ABEFCD内错ABCDEF同旁内∠1和∠9、∠4和∠12、∠2和∠10、∠3和∠11同旁内例1.∠1与哪个角是内错角?

ACBDE12答:∠EAC答:∠DAB答:∠BAC,∠BAE

,∠2∠1与哪个角是同旁内角?∠2与哪个角是内错角?1、观察右图并填空:(1)

∠1

是同位角;(2)

∠5

是同旁内角;(3)

∠1

是内错角;随堂练习banm23145∠4∠3∠2

2、指出图中的同位角、内错角、同旁内角ablmn1234同位角:∠4与∠1内错角:∠4与∠2同旁内角:∠3与∠1平行线的性质平行线的判定两直线平行条件结论同位角相等内错角相等同旁内角互补条件同位角相等内错角相等同旁内角互补结论两直线平行夹在两平行线间的垂线段的长度,叫做两平行线间的距离。综合应用:ABCDEF1231、填空:

(1)、∵∠A=____,(已知)

AC∥ED,(_____________________)

(2)、∵AB∥______,(已知)∠2=∠4,(______________________)45(3)、___∥___,(已知)∠B=∠3.(___________

___________)

试一试,你准行!

模仿上题自己编题。(考查平行线的性质或判定)∠4同位角相等,两直线平行。DF两直线平行,内错角相等。ABDF两直线平行,同位角相等.判定性质

性质∴∴∴∵ABCDEF123456如图:填空,并注明理由。(1)、∵∠1=∠2

(已知)

——∥——()

∵∠3=∠4

(已知)

——∥——()

∵∠5=∠6

(已知)

——∥——()

∵∠5+∠AFE=180

(已知)

——∥——()

∵AB∥FC,ED∥FC

(已知)

——∥——()∴∴∴∴∴ABED内错角相等。两直线平行,AFBE同位角相等,两直线平行。BCEF

内错角相等,两直线平行。AFBE同旁内角互补,两直线平行。ABED平行于同直线的两条直线互相平行。平行线的判定应用练习:例2.已知∠DAC=∠ACB,∠D+∠DFE=1800,求证:EF//BC

证明:∵∠DAC=∠ACB(已知)∴AD//BC

(内错角相等,两直线平行)∵∠D+∠DFE=1800(已知)∴AD//EF

(同旁内角互补,两直线平行)∴EF//BC(平行于同一条直线的两条直线互相平行)ABCDEF例1.如图已知:∠1+∠2=180°,

求证:AB∥CD。

证明:由:∠1+∠2=180°(已知),∠1=∠3(对顶角相等). ∠2=∠4(对顶角相等)

根据:等量代换

得:∠3+∠4=180°.

根据:同旁内角互补,两直线平行得:AB//CD.4123ABCEFD例2.如图,已知:AC∥DE,∠1=∠2,试证明AB∥CD。

证明:∵由AC∥DE(已知)

∠ACD=∠2

(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠ACD(等量代换)∴AB∥CD(内错角相等,两直线平行)ADBE12C例3.已知EF⊥AB,CD⊥AB,∠EFB=∠GDC,求证:∠AGD=∠ACB。证明:∵EF⊥AB,CD⊥AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论