2020-2024年五年高考1年模拟生物真题分类汇编(北京专用) 专题03 细胞呼吸和光合作用(解析版)_第1页
2020-2024年五年高考1年模拟生物真题分类汇编(北京专用) 专题03 细胞呼吸和光合作用(解析版)_第2页
2020-2024年五年高考1年模拟生物真题分类汇编(北京专用) 专题03 细胞呼吸和光合作用(解析版)_第3页
2020-2024年五年高考1年模拟生物真题分类汇编(北京专用) 专题03 细胞呼吸和光合作用(解析版)_第4页
2020-2024年五年高考1年模拟生物真题分类汇编(北京专用) 专题03 细胞呼吸和光合作用(解析版)_第5页
已阅读5页,还剩73页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2020-2024年五年高考真题分类汇编PAGEPAGE1专题03细胞呼吸和光合作用五年考情考情分析细胞呼吸和光合作用2024年北京卷第4题2024年北京卷第17题2023年北京卷第2题2023年北京卷第3题2023年北京卷第20题2022年北京卷第2题2022年北京卷第3题2021年北京卷第3题2021年北京卷第9题2021年北京卷第19题细胞代谢一直以来都是北京高考的高频考点,除了简答题21题,选择题中也有涉及,常以情境信息为背景,既从基础性维度考查光合作用和细胞呼吸的过程和特点,又需考生结合题目情境综合性分析。从基础性、综合性、应用性和创新性4个维度进行设计,维度间既相互关联,又有交叉和递进。既贯穿基础性和综合性,又关注应用性和创新性,有利于科学选拔人才1、(2024·北京·高考真题)某同学用植物叶片在室温下进行光合作用实验,测定单位时间单位叶面积的氧气释放量,结果如图所示。若想提高X,可采取的做法是()A.增加叶片周围环境CO2浓度B.将叶片置于4℃的冷室中C.给光源加滤光片改变光的颜色D.移动冷光源缩短与叶片的距离【答案】A【解析】〖祥解〗温度对光合作用的影响:在最适温度下酶的活性最强,光合作用强度最大,当温度低于最适温度,光合作用强度随温度的增加而加强,当温度高于最适温度,光合作用强度随温度的增加而减弱。【详析】A、二氧化碳是光合作用的原料,增加叶片周围环境CO2浓度可增加单位时间单位叶面积的氧气释放量,A符合题意;B、降低温度会降低光合作用的酶活性,会降低单位时间单位叶面积的氧气释放量,B不符合题意;C、给光源加滤光片,减少了光源,会降低光合速率,C不符合题意;D、移动冷光源缩短与叶片的距离会使光照强度增大,但单位时间单位叶面积的最大氧气释放量可能不变,因为光饱和点之后,光合作用强度不再随着光照强度的增强而增强,D不符合题意。故选A。2、(2024·北京·高考真题)啤酒经酵母菌发酵酿制而成。生产中,需从密闭的发酵罐中采集酵母菌用于再发酵,而直接开罐采集的传统方式会损失一些占比很低的独特菌种。研究者探究了不同氧气含量下酵母菌的生长繁殖及相关调控,以优化采集条件。(1)酵母菌是兼性厌氧微生物,在密闭发酵罐中会产生___________和CO2。有氧培养时,酵母菌增殖速度明显快于无氧培养,原因是酵母菌进行有氧呼吸,产生大量___________。(2)本实验中,采集是指取样并培养4天。在不同的气体条件下从发酵罐中采集酵母菌,统计菌落数(图甲)。由结果可知,有利于保留占比很低菌种的采集条件是______。(3)根据上述实验结果可知,采集酵母菌时O2浓度的陡然变化会导致部分菌体死亡。研究者推测,酵母菌接触O2的最初阶段,细胞产生的过氧化氢(H2O2)浓度会持续上升,使酵母菌受损。已知H2O2能扩散进出细胞。研究者在无氧条件下从发酵罐中取出酵母菌,分别接种至含不同浓度H2O2的培养基上,无氧培养后得到如图乙所示结果。请判断该实验能否完全证实上述推测,并说明理由_____。(4)上述推测经证实后,研究者在有氧条件下从发酵罐中取样并分为两组,A组菌液直接滴加到H2O2溶液中,无气泡产生;B组菌液有氧培养4天后,取与A组活菌数相同的菌液,滴加到H2O2溶液中,出现明显气泡。结果说明,酵母菌可通过产生__________以抵抗H2O2的伤害。【答案】(1)①.酒精##C2H5OH②.能量(2)无氧/无氧(3)不能,该实验只能证明随着H2O2

浓度的持续上升,酵母菌存活率下降(酵母菌受损程度加深),但不能证明酵母菌接触O2的最初阶段,细胞产生的H2O2

浓度会持续上升;该实验在无氧条件下从发酵罐中取出酵母菌,接种到培养基上无氧培养,并没有创造O2浓度陡然变化的条件(4)过氧化氢酶##H2O2

酶【解析】〖祥解〗(1)在有氧条件下,酵母菌进行有氧呼吸大量繁殖;(2)在无氧条件下,酵母菌进行无氧呼吸产生酒精和二氧化碳。【小问1详析】酵母菌在密闭发酵罐中进行无氧呼吸,会产生酒精(C2H5OH)和CO2。有氧培养时,酵母菌进行有氧呼吸,有机物被彻底氧化分解,产生大量能量,而无氧呼吸中有机物不能彻底分解,只产生少量能量,故有氧培养时酵母菌增殖速度明显快于无氧培养。【小问2详析】由图甲结果可知,无氧/无氧条件下,菌落数最多,因此有利于保留占比很低菌种的采集条件是无氧/无氧。【小问3详析】依据图乙结果可知,随着H2O2浓度的持续上升,酵母菌存活率下降(酵母菌受损程度加深),但不能证明酵母菌接触O2的最初阶段,细胞产生的H2O2浓度会持续上升;由题意可知,该实验在无氧条件下从发酵罐中取出酵母菌,接种到含不同浓度H2O2的培养基上进行无氧培养,并没有创造O2浓度陡然变化的条件,所以不能完全证实上述推测。【小问4详析】过氧化氢酶能催化H2O2分解出现明显气泡,因此实验结果说明,酵母菌可通过产生过氧化氢酶以抵抗H2O2的伤害。3、(2023·北京·高考真题)运动强度越低,骨骼肌的耗氧量越少。如图显示在不同强度体育运动时,骨骼肌消耗的糖类和脂类的相对量。对这一结果正确的理解是()A.低强度运动时,主要利用脂肪酸供能B.中等强度运动时,主要供能物质是血糖C.高强度运动时,糖类中的能量全部转变为ATPD.肌糖原在有氧条件下才能氧化分解提供能量【答案】A〖祥解〗如图显示在不同强度体育运动时,骨骼肌消耗的糖类和脂类的相对量,当运动强度较低时,主要利用脂肪酸供能;当中等强度运动时,主要供能物质是肌糖原,其次是脂肪酸;当高强度运动时,主要利用肌糖原供能。【详析】A、由图可知,当运动强度较低时,主要利用脂肪酸供能,A正确;B、由图可知,中等强度运动时,主要供能物质是肌糖原,其次是脂肪酸,B错误;C、高强度运动时,糖类中的能量大部分以热能的形式散失,少部分转变为ATP,C错误;D、高强度运动时,机体同时进行有氧呼吸和无氧呼吸,肌糖原在有氧条件和无氧条件均能氧化分解提供能量,D错误。故选A。4、(2023·北京·高考真题)在两种光照强度下,不同温度对某植物CO2吸收速率的影响如图。对此图理解错误的是()

A.在低光强下,CO2吸收速率随叶温升高而下降的原因是呼吸速率上升B.在高光强下,M点左侧CO2吸收速率升高与光合酶活性增强相关C.在图中两个CP点处,植物均不能进行光合作用D.图中M点处光合速率与呼吸速率的差值最大【答案】C〖祥解〗本实验的自变量为光照强度和温度,因变量为CO2吸收速率。【详析】A、CO2吸收速率代表净光合速率,低光强下,CO2吸收速率随叶温升高而下降的原因是呼吸速率上升,需要从外界吸收的CO2减少,A正确;B、在高光强下,M点左侧CO2吸收速率升高主要原因是光合酶的活性增强,B正确;C、CP点代表呼吸速率等于光合速率,植物可以进行光合作用,C错误;D、图中M点处CO2吸收速率最大,即净光合速率最大,也就是光合速率与呼吸速率的差值最大,D正确。故选C。5、(2023·北京·高考真题)学习以下材料,回答下面问题。调控植物细胞活性氧产生机制的新发现,能量代谢本质上是一系列氧化还原反应。在植物细胞中,线粒体和叶绿体是能量代谢的重要场所。叶绿体内氧化还原稳态的维持对叶绿体行使正常功能非常重要。在细胞的氧化还原反应过程中会有活性氧产生,活性氧可以调控细胞代谢,并与细胞凋亡有关。我国科学家发现一个拟南芥突变体m(M基因突变为m基因),在受到长时间连续光照时,植株会出现因细胞凋亡而引起的叶片黄斑等表型。M基因编码叶绿体中催化脂肪酸合成的M酶。与野生型相比,突变体m中M酶活性下降,脂肪酸含量显著降低。为探究M基因突变导致细胞凋亡的原因,研究人员以诱变剂处理突变体m,筛选不表现细胞凋亡,但仍保留m基因的突变株。通过对所获一系列突变体的详细解析,发现叶绿体中pMDH酶、线粒体中mMDH酶和线粒体内膜复合物I(催化有氧呼吸第三阶段的酶)等均参与细胞凋亡过程。由此揭示出一条活性氧产生的新途径(如图):A酸作为叶绿体中氧化还原平衡的调节物质,从叶绿体经细胞质基质进入到线粒体中,在mMDH酶的作用下产生NADH([H])和B酸,NADH被氧化会产生活性氧。活性氧超过一定水平后引发细胞凋亡。

在上述研究中,科学家从拟南芥突变体m入手,揭示出在叶绿体和线粒体之间存在着一条A酸-B酸循环途径。对A酸-B酸循环的进一步研究,将为探索植物在不同环境胁迫下生长的调控机制提供新的思路。(1)叶绿体通过作用将CO2转化为糖。从文中可知,叶绿体也可以合成脂肪的组分。(2)结合文中图示分析,M基因突变为m后,植株在长时间光照条件下出现细胞凋亡的原因是:,A酸转运到线粒体,最终导致产生过量活性氧并诱发细胞凋亡。(3)请将下列各项的序号排序,以呈现本文中科学家解析“M基因突变导致细胞凋亡机制”的研究思路:。①确定相应蛋白的细胞定位和功能②用诱变剂处理突变体m③鉴定相关基因④筛选保留m基因但不表现凋亡的突变株(4)本文拓展了高中教材中关于细胞器间协调配合的内容,请从细胞器间协作以维持稳态与平衡的角度加以概括说明。【答案】(1)光合脂肪酸(2)M酶活性下降使脂肪酸合成受阻,NADH消耗减少,同时长时间光照促进产生NADH,NADH含量升高,导致A酸合成过多(3)②④③①(4)线粒体与叶绿体之间通过A酸-B酸循环协同合作,将叶绿体中的[H]运输到线粒体氧化,以维持叶绿体内氧化还原稳态〖祥解〗本实验为探究M基因突变导致细胞凋亡的原因,由此揭示A酸作为叶绿体中氧化还原平衡的调节物质,从叶绿体经细胞质基质进入到线粒体中,在mMDH酶的作用下产生NADH([H])和B酸,NADH被氧化会产生活性氧。【详析】(1)叶绿体通过光合作用将CO2转化为糖。由于M基因编码叶绿体中催化脂肪酸合成的M酶。可推测叶绿体也可以合成脂肪的组分脂肪酸。(2)据图可知,M基因突变为m后,植株在长时间光照条件下出现细胞凋亡的原因是:M酶活性下降使脂肪酸合成受阻,NADH消耗减少,同时长时间光照促进产生NADH,NADH含量升高,导致A酸合成过多。(3)为探究M基因突变导致细胞凋亡的原因,研究人员以诱变剂处理突变体m,筛选不表现细胞凋亡(不出现叶片黄斑),但仍保留m基因的突变株(叶绿体中脂肪酸含量减低),通过对所获一系列突变体的详细解析,③鉴定相关基因,发现叶绿体中pMDH酶、线粒体中mMDH酶和线粒体内膜复合物I(催化有氧呼吸第三阶段的酶)等均参与细胞凋亡过程,进而①确定相应蛋白的细胞定位和功能,正确顺序为②④③①。。(4)结合题意和图文,叶绿体内氧化还原稳态的维持对叶绿体行使正常功能非常重要,叶绿体和线体协调配合,维持细胞的稳态与平衡:线粒体与叶绿体之间通过A酸-B酸循环协同合作,将叶绿体中的[H]运输到线粒体氧化,以维持叶绿体内氧化还原稳态。6、(2022·北京·高考真题)光合作用强度受环境因素的影响。车前草的光合速率与叶片温度、CO2浓度的关系如下图。据图分析不能得出()A.低于最适温度时,光合速率随温度升高而升高B.在一定的范围内,CO2浓度升高可使光合作用最适温度升高C.CO2浓度为200μL·L-1时,温度对光合速率影响小D.10℃条件下,光合速率随CO2浓度的升高会持续提高【答案】D〖祥解〗由题图分析可得:(1)图中所展现有两个影响光合速率的因素:一个是CO2的浓度,另一个是温度。(2)当温度相同时,光合速率会随着CO2的浓度升高而增大;当CO2的浓度相同时,光合速率会随着温度的升高而增大,达到最适温度时,光合速率达到最高值,后随着温度的继续升高而减小。(3)当CO2浓度为200μL·L-1时,最适温度为25℃左右;当CO2浓度为370μL·L-1时,最适温度为30℃;当CO2浓度为1000μL·L-1时,最适温度接近40℃。【详析】A、分析题图可知,当CO2浓度一定时,光合速率会随着温度的升高而增大,达到最适温度时,光合速率达到最高值,后随着温度的继续升高而减小,A正确;B、分析题图可知,当CO2浓度为200μL·L-1时,最适温度为25℃左右;当CO2浓度为370μL·L-1时,最适温度为30℃;当CO2浓度为1000μL·L-1时,最适温度接近40℃,可以表明在一定范围内,CO2浓度的升高会使光合作用最适温度升高,B正确;C、分析题图可知,当CO2浓度为200μL·L-1时,光合速率随温度的升高而改变程度不大,光合速率在温度的升高下,持续在数值为10处波动,而CO2浓度为其他数值时,光合速率随着温度的升高变化程度较大,曲线有较大的变化趋势,所以表明CO2浓度为200μL·L-1时,温度对光合速率影响小,C正确;D、分析题图可知,10℃条件下,CO2浓度为200μL·L-1至370μL·L-1时,光合速率有显著提高,而370μL·L-1至1000μL·L-1时,光合速率无明显的提高趋势,而且370μL·L-1时与1000μL·L-1时,两者光合速率数值接近同一数值,所以不能表明10℃条件下,光合速率随CO2浓度的升高会持续提高,D错误。故选D。7、(2022·北京·高考真题)在北京冬奥会的感召下,一队初学者进行了3个月高山滑雪集训,成绩显著提高,而体重和滑雪时单位时间的摄氧量均无明显变化。检测集训前后受训者完成滑雪动作后血浆中乳酸浓度,结果如下图。与集训前相比,滑雪过程中受训者在单位时间内()A.消耗的ATP不变B.无氧呼吸增强C.所消耗的ATP中来自有氧呼吸的增多D.骨骼肌中每克葡萄糖产生的ATP增多【答案】B〖祥解〗人体无氧呼吸的产物是乳酸。消耗等量的葡萄糖,有氧呼吸产生的ATP多于无氧呼吸。【详析】A、滑雪过程中,受训者耗能增多,故消耗的ATP增多,A错误;B、人体无氧呼吸的产物是乳酸,分体题图可知,与集训前相比,集训后受训者血浆中乳酸浓度增加,由此可知,与集训前相比,滑雪过程中受训者在单位时间内无氧呼吸增强,B正确;C、分体题图可知,与集训前相比,集训后受训者血浆中乳酸浓度增加,由此可知,与集训前相比,滑雪过程中受训者在单位时间内无氧呼吸增强,故所消耗的ATP中来自无氧呼吸的增多,C错误;D、消耗等量的葡萄糖,有氧呼吸产生的ATP多于无氧呼吸,而滑雪过程中受训者在单位时间内无氧呼吸增强,故骨骼肌中每克葡萄糖产生的ATP减少,D错误。故选B。8、(2021·北京·高考真题)将某种植物置于高温环境(HT)下生长一定时间后,测定HT植株和生长在正常温度(CT)下的植株在不同温度下的光合速率,结果如图。由图不能得出的结论是()A.两组植株的CO2吸收速率最大值接近B.35℃时两组植株的真正(总)光合速率相等C.50℃时HT植株能积累有机物而CT植株不能D.HT植株表现出对高温环境的适应性【答案】B〖祥解〗1、净光合速率是植物绿色组织在光照条件下测得的值——单位时间内一定量叶面积CO2的吸收量或O2的释放量。净光合速率可用单位时间内O2的释放量、有机物的积累量、CO2的吸收量来表示。2、真正(总)光合速率=净光合速率+呼吸速率。【详析】A、由图可知,CT植株和HT植株的CO2吸收速率最大值基本一致,都接近于3nmol••cm-2•s-1,A正确;B、CO2吸收速率代表净光合速率,而总光合速率=净光合速率+呼吸速率。由图可知35℃时两组植株的净光合速率相等,但呼吸速率未知,故35℃时两组植株的真正(总)光合速率无法比较,B错误;C、由图可知,50℃时HT植株的净光合速率大于零,说明能积累有机物,而CT植株的净光合速率不大于零,说明不能积累有机物,C正确;D、由图可知,在较高的温度下HT植株的净光合速率仍大于零,能积累有机物进行生长发育,体现了HT植株对高温环境较适应,D正确。故选B。9、(2021·北京·高考真题)在有或无机械助力两种情形下,从事家务劳动和日常运动时人体平均能量消耗如图。对图中结果叙述错误的是()A.走路上学比手洗衣服在单位时间内耗能更多B.葡萄糖是图中各种活动的重要能量来源C.爬楼梯时消耗的能量不是全部用于肌肉收缩D.借助机械减少人体能量消耗就能缓解温室效应【答案】D〖祥解〗葡萄糖是细胞生命活动所需要的主要能源物质;ATP是驱动细胞生命活动的直接能源物质,其水解释放的能量可满足细胞各项生命活动对能量的需求。【详析】A、由图可知,走路上学比手洗衣服在单位时间内耗能更多,A正确;B、葡萄糖是细胞生命活动所需要的主要能源物质,常被形容为“生命的燃料”,B正确;C、爬楼梯时消耗的能量不是全部用于肌肉收缩,部分会转化为热能,C正确;D、有机械助力时人确实比无机械助力消耗的能量少,但机械助力会消耗更多的能量,不利于缓解温室效应,D错误。故选D。10、(2021·北京·高考真题)学习以下材料,回答(1)~(4)题。光合产物如何进入叶脉中的筛管高等植物体内的维管束负责物质的长距离运输,其中的韧皮部包括韧皮薄壁细胞、筛管及其伴胞等。筛管是光合产物的运输通道。光合产物以蔗糖的形式从叶肉细胞的细胞质移动到邻近的小叶脉,进入其中的筛管-伴胞复合体(SE-CC),再逐步汇入主叶脉运输到植物体其他部位。蔗糖进入SE-CC有甲、乙两种方式。在甲方式中,叶肉细胞中的蔗糖通过不同细胞间的胞间连丝即可进入SE-CC。胞间连丝是相邻细胞间穿过细胞壁的细胞质通道。在乙方式中,蔗糖自叶肉细胞至SE-CC的运输(图1)可以分为3个阶段:①叶肉细胞中的蔗糖通过胞间连丝运输到韧皮薄壁细胞;②韧皮薄壁细胞中的蔗糖由膜上的单向载体W顺浓度梯度转运到SE-CC附近的细胞外空间(包括细胞壁)中;③蔗糖从细胞外空间进入SE-CC中,如图2所示。SE-CC的质膜上有“蔗糖-H+共运输载体”(SU载体),SU载体与H+泵相伴存在。胞内H+通过H+泵运输到细胞外空间,在此形成较高的H+浓度,SU载体将H+和蔗糖同向转运进SE-CC中。采用乙方式的植物,筛管中的蔗糖浓度远高于叶肉细胞。研究发现,叶片中SU载体含量受昼夜节律、蔗糖浓度等因素的影响,呈动态变化。随着蔗糖浓度的提高,叶片中SU载体减少,反之则增加。研究SU载体含量的动态变化及调控机制,对于了解光合产物在植物体内的分配规律,进一步提高作物产量具有重要意义。(1)在乙方式中,蔗糖经W载体由韧皮薄壁细胞运输到细胞外空间的方式属于。由H+泵形成的有助于将蔗糖从细胞外空间转运进SE-CC中。(2)与乙方式比,甲方式中蔗糖运输到SE-CC的过程都是通过这一结构完成的。(3)下列实验结果支持某种植物存在乙运输方式的有。A.叶片吸收14CO2后,放射性蔗糖很快出现在SE-CC附近的细胞外空间中B.用蔗糖跨膜运输抑制剂处理叶片,蔗糖进入SE-CC的速率降低C.将不能通过细胞膜的荧光物质注射到叶肉细胞,SE-CC中出现荧光D.与野生型相比,SU功能缺陷突变体的叶肉细胞中积累更多的蔗糖和淀粉(4)除了具有为生物合成提供原料、为生命活动供能等作用之外,本文还介绍了蔗糖能调节SU载体的含量,体现了蔗糖的功能。【答案】(1)协助扩散/易化扩散(跨膜)H+浓度差(2)胞间连丝(3)ABD(4)信息传递〖祥解〗分析题意可知,光合产物进入筛管的方式主要有两种:甲方式是通过胞间连丝的形式进行;乙方式共分为三个阶段,采用乙方式的植物,筛管中的蔗糖浓度远高于叶肉细胞。结合物质跨膜运输的特点分析作答。【详析】(1)结合题意分析,在乙方式中,蔗糖经W载体由韧皮薄壁细胞运输到细胞外过程中,运输需要载体蛋白,且由题意“韧皮薄壁细胞中的蔗糖由膜上的单向载体W顺浓度梯度转运”可知运输方向为顺浓度梯度,故方式为协助扩散/易化扩散;“胞内HT通过H+泵运输到细胞外空间,在此形成较高的H+浓度”,故由H+泵形成的跨膜H+浓度差有助于将蔗糖从细胞外空间转运进SE-CC中。(2)结合题意可知,乙方式的跨膜运输需要浓度差和载体蛋白等协助,与其相比,甲方式“叶肉细胞中的蔗糖通过不同细胞间的胞间连丝即可进入SE-CC”,即甲方式中蔗糖运输到SE-CC的过程都是通过胞间连丝这一结构完成的。(3)A、叶片吸收14CO2后,放射性蔗糖很快出现在SE-CC附近的细胞外空间中,说明物质是蔗糖自叶肉细胞至SE-CC的运输的,符合乙运输方式,A正确;B、用蔗糖跨膜运输抑制剂处理叶片,蔗糖进入SE-CC的速率降低,说明物质运输方式需要载体蛋白协助,符合乙中的②过程,B正确;C、将不能通过细胞膜的荧光物质注射到叶肉细胞,SE-CC中出现荧光,推测叶肉细胞中的蔗糖可能通过不同细胞间的胞间连丝进入SE-CC,即可能是甲方式,C错误;D、与野生型相比,SU功能缺陷突变体的叶肉细胞中积累更多的蔗糖和淀粉,说明SU是将叶肉细胞中的蔗糖转运进SE-CC中的重要载体,符合乙方式中的③过程,D正确。故选ABD。(4)结合题意"叶片中SU载体含量受昼夜节律、蔗糖浓度等因素的影响,呈动态变化。随着蔗糖浓度的提高,叶片中SU载体减少,反之则增加"可知,蔗糖能调节SU载体的含量,即蔗糖可以调节一些生命活动,体现了蔗糖的信息传递功能。【『点石成金』】本题主要考查物质跨膜运输的方式,要求考生识记常见物质跨膜运输的方式和特点,能结合题干信息分析作答。一、单选题1.(2024·北京·模拟预测)由于缺乏完善的工艺,自酿酒含有大量甲醇,饮用后易中毒,危及生命,相关代谢如下图所示。下列相关叙述,不正确的是(

)A.甲醇摄入过多可能导致乳酸增多出现酸中毒B.若患者昏迷,应及时血液透析并接入呼吸机C.静脉注射乙醇脱氢酶可以解除甲醇中毒症状D.高浓度酒精作为口服解毒剂可缓解中毒症状【答案】C〖祥解〗1、有氧呼吸的第一、二、三阶段的场所依次是细胞质基质、线粒体基质和线粒体内膜。有氧呼吸第一阶段是葡萄糖分解成丙酮酸和[H],合成少量ATP;第二阶段是丙酮酸和水反应生成二氧化碳和[H],合成少量ATP;第三阶段是氧气和[H]反应生成水,合成大量ATP。2、无氧呼吸的场所是细胞质基质,无氧呼吸的第一阶段和有氧呼吸的第一阶段相同。无氧呼吸由于不同生物体中相关的酶不同,在植物细胞和酵母菌中产生酒精和二氧化碳,在动物细胞和乳酸菌中产生乳酸。【详析】A、由图可知,甲醇摄入过多,会通过一系列反应抑制线粒体有氧呼吸酶的活性,导致人体进行无氧呼吸,无氧呼吸的产物是乳酸,从而导致乳酸增多出现酸中毒,A正确;B、若患者昏迷,血液中的甲酸无法被代谢掉,且甲酸会抑制线粒体有氧呼吸酶的活性,因此应及时血液透析并接入呼吸机,B正确;C、静脉注射乙醇脱氢酶,乙醇脱氢酶会促进甲醇转化为甲醛,甲醛会进一步转化为甲酸,甲酸无法代谢,会抑制线粒体有氧呼吸酶的活性,因此静脉注射乙醇脱氢酶不能解除甲醇中毒症状,C错误;D、由于乙醇会和甲醇竞争结合乙醇脱氢酶,因此高浓度口服酒精(乙醇),在一定程度上可抑制甲醇转化为甲醛,可缓解中毒症状,D正确。故选C。2.(2024·北京·模拟预测)为了给引种栽培提供理论依据,研究者测量了常绿乔木深山含笑在不同季节的净光合速率(Pn)的日变化(见下图)。下列相关叙述,不正确的是(

)A.可以用CO2的吸收速率作为Pn的检测指标,其值越大表明植物生长越快B.左图夏季的Pn日变化为双峰曲线,是因为雨水充沛和中午光强过大C.据图分析,推测夏季Pn最高的原因之一是夏季光照强度最高D.秋冬光合有效辐射减弱,可以适当修剪枝叶以减少物质能量消耗【答案】B〖祥解〗光合速率,也被称为光合强度,是光合作用强弱的一种表示法。它可以用单位时间、单位叶面积所吸收的二氧化碳或释放的氧气量来表示,也可以用单位时间、单位叶面积上干物质的积累量来表示。净光合速率与呼吸速率的数值之和是总光合速率。【详析】A、可以用CO2的吸收速率代表净光合速率的数值,其值越大表明净光合速率越大,积累量越多,植物生长越快,A正确;B、左图夏季的Pn日变化为双峰曲线,是因为雨水充沛和中午光强过大,温度适宜等诸多环境因素影响,B错误;C、据图分析,推测夏季Pn最高的原因之一是夏季光照强度最高,光照强度不是唯一因素,例如还有温度等影响因素,C正确;D、秋冬光合有效辐射减弱,可以适当修剪枝叶以减弱呼吸作用,减少物质能量消耗,D正确。故选B。3.(2024·北京·模拟预测)细胞色素C是细胞内普遍含有的一种蛋白质,约有104个氨基酸。它是一种线粒体内膜蛋白,参与将[H]中电子传递给氧气的过程。据推算,它的氨基酸序列每2000万年才发生1%的改变。下列关于细胞色素C的叙述不正确的是(

)A.可由C、H、O、N等元素组成B.是一种能催化ATP分解的蛋白质C.是一种由单体所组成的生物大分子D.其序列相似性可作为生物进化的证据【答案】B〖祥解〗蛋白质的元素组成是C、H、O、N等,由氨基酸脱水缩合而成的,能构成蛋白质的氨基酸一般有氨基和羧基连接在同一个碳原子上。【详析】A、细胞色素C是一种蛋白质,由氨基酸脱水缩合而成,含有C、H、O、N等化学元素,A正确;B、细胞色素C参与将[H]中电子传递给氧气的过程,是电子传递链的组成成分,不是催化ATP分解的酶,B错误;C、细胞色素C是蛋白质,是由氨基酸脱水缩合形成的生物大分子,C正确;D、细胞色素C的氨基酸序列每2000万年才发生1%的改变,其序列的相似性可作为生物进化的证据,D正确。故选B。4.(2024·北京西城·二模)线粒体正常的形态和数量与其融合、裂变相关,该过程受DRP-1和FZO-1等基因的调控。衰老过程中,肌肉细胞线粒体形态数量发生变化、线粒体碎片化增加。下图是研究运动对衰老线虫肌肉细胞线粒体影响的结果。说法正确的是(

)注:颜色越深代表细胞中线粒体碎片化程度越高,drp-1、fzo-1代表相关基因突变体A.线粒体是细胞合成ATP的唯一场所B.运动可减缓衰老引起的线粒体碎片化C.敲除DRP-1基因会加重线粒体碎片化D.线粒体融合与裂变不是运动益处所必需【答案】B〖祥解〗线粒体是有氧呼吸的主要场所。有氧呼吸过程分为三个阶段,第一阶段是葡萄糖酵解形成丙酮酸和[H],发生在细胞质基质中;有氧呼吸的第二阶段是丙酮酸和水反应产生二氧化碳和[H],发生在线粒体基质中;有氧呼吸的第三阶段是[H]与氧气反应形成水,发生在线粒体内膜上。无氧呼吸只在细胞质基质中进行,有氧呼吸释放的能量远远多于无氧呼吸。【详析】A、除了线粒体可以产生ATP外,线虫肌肉细胞中细胞质基质也可以产生ATP,A错误;B、根据图示信息,颜色越深代表细胞中线粒体碎片化程度越高,无论是10日龄,还是5日龄,运动组与对照组相比较,线粒体的碎片化细胞比例均降低,说明运动可减缓衰老引起的线粒体碎片化,B正确;C、依据图示信息,DRP-1基因突变体,与野生型相比较,线粒体碎片化细胞比例上升,说明DRP-1基因突变会加重线粒体碎片化,但并不能得出敲除DRP-1基因会加重线粒体碎片化的结论,C错误;D、由野生型实验可以看出,无论是10日龄,还是5日龄,运动组与对照组相比较,线粒体的碎片化细胞比例均降低,说明运动可减缓衰老引起的线粒体碎片化,但是线粒体融合与裂变是否为运动益处所必需,无法判断,D错误。故选B。5.(2024·北京朝阳·二模)肺炎克雷伯菌(Kpn)存在于某些人群的肠道中,可通过细胞呼吸不断产生大量乙醇,引起内源性酒精性肝病。下列叙述正确的是(

)A.Kpn在细胞质基质中将丙酮酸转化为乙醇并产生大量ATPB.Kpn无氧呼吸使有机物中稳定的化学能全部转化为活跃的化学能C.乳酸菌、酵母菌、Kpn都可以引起内源性酒精性肝病D.高糖饮食可能会加重内源性酒精性肝病患者的病情【答案】D〖祥解〗1、有氧呼吸是指细胞在氧的参与下,通过多种酶的催化作用,把葡萄糖等有机物彻底氧化分解,产生二氧化碳和水,释放能量,生成大量ATP的过程。2、在没有氧气参与的情况下,葡萄糖等有机物经过不完全分解,释放少量能量的过程,就是无氧呼吸。【详析】A、Kpn在细胞质基质中将丙酮酸转化为乙醇并产生少量ATP,A错误;B、Kpn无氧呼吸使有机物中稳定的化学能少部分转化为活跃的化学能,大部分储存在有机物中,B错误;C、乳酸菌无氧呼吸产生酒精,不能引起内源性酒精性肝病,C错误;D、高糖饮食会为无氧呼吸产生大量的能量,可能会加重内源性酒精性肝病患者的病情,D正确。故选D。6.(2024·北京房山·一模)手机成瘾者易出现注意力不集中、易冲动等问题。欲研究不同强度有氧运动对大学生手机成瘾者的影响,利用Stroop测试评估注意力集中情况,结果如图。对图中结果叙述错误的是(

)A.葡萄糖是不同强度运动的重要能量来源B.高强度的有氧运动使注意力更加集中C.有氧运动时消耗的能量不是全部用于肌肉收缩D.适当强度的有氧运动可缓解手机成瘾症状【答案】B〖祥解〗据图可知,较对照组而言,中强度的有氧运动使注意力更加集中,可缓解手机成瘾症状。【详析】A、葡萄糖是主要能源物质,是不同强度运动的重要能量来源,A正确;BD、据图可知,中强度的有氧运动使注意力更加集中,可缓解手机成瘾症状,B错误,D正确;C、有氧运动时消耗的能量不是全部用于肌肉收缩,其中大部分能量以热能形式散失,C正确。故选B。7.(2024·北京海淀·一模)新生无毛哺乳动物体内存在一种含有大量线粒体的褐色脂肪组织,褐色脂肪细胞的线粒体内膜含有蛋白质U。蛋白质U不影响组织细胞对氧气的利用,但能抑制呼吸过程中ADP转化为ATP。据此推测当蛋白质U发挥作用时(

)A.葡萄糖不能氧化分解B.只在细胞质基质中进行无氧呼吸C.细胞中会积累大量的ATPD.可大量产热,维持体温【答案】D〖祥解〗有氧呼吸的全过程,可以分为三个阶段:第一个阶段,一个分子的葡萄糖分解成两个分子的丙酮酸,在分解的过程中产生少量的[H],同时释放出少量的能量。这个阶段是在细胞质基质中进行的;第二个阶段,丙酮酸经过一系列的反应,分解成二氧化碳和[H],同时释放出少量的能量。这个阶段是在线粒体中进行的;第三个阶段,前两个阶段产生的[H],经过一系列的反应,与氧结合而形成水,同时释放出大量的能量。【详析】A、由题意可知,当蛋白质U发挥作用时抑制呼吸过程中ADP转化为ATP,但葡萄糖在细胞质基质中被氧化分解,释放一定的能量,A错误;B、有氧呼吸的第一阶段的反应也是在细胞质基质中发生的,B错误;C、当蛋白质U发挥作用时抑制呼吸过程中ADP转化为ATP,细胞中不会积累大量的ATP,实际上细胞中ATP的含量很少,C错误;D、当蛋白质U发挥作用时,线粒体内膜上ATP的合成速率下降,代谢反应释放的能量转化为热能的比例增加,维持体温,D正确。故选D。8.(2024·北京朝阳·一模)酵母菌作为模式生物被广泛地用于科学研究。下列中学生物学实验中,酵母菌作为实验材料使用正确的是()A.利用酵母菌进行无氧发酵制作酸奶或泡菜B.固体培养基培养酵母菌研究种群数量变化C.利用酵母菌探究细胞呼吸是否都需要氧气D.观察酵母菌细胞内叶绿体和细胞质的流动【答案】C〖祥解〗酵母菌是兼性厌氧型真菌,有氧条件下进行有氧呼吸,大量繁殖;无氧条件下,进行无氧呼吸,产生酒精。【详析】A、制作酸奶和泡菜用的菌种是乳酸菌,A错误;B、常用液体培养基培养酵母菌研究种群数量变化,B错误;C、酵母菌是兼性厌氧型真菌,可利用酵母菌探究细胞呼吸是否都需要氧气,C正确;D、酵母菌无叶绿体,D错误。故选C。9.(2024·北京丰台·一模)无氧运动产生的乳酸会导致肌肉酸胀乏力,乳酸在肌肉和肝脏中的部分代谢过程如下图。下列叙述错误的是(

)A.无氧运动时丙酮酸分解为乳酸可以为肌细胞迅速供能B.肌细胞无氧呼吸产生的乳酸能在肝脏中再次转化为葡萄糖C.肌细胞中肌糖原不能分解产生葡萄糖可能是缺乏相关的酶D.乳酸在肝脏中的代谢过程可防止乳酸堆积引起酸中毒【答案】A〖祥解〗据图可知,骨骼肌细胞中,葡萄糖分解形成乳酸,乳酸可以在肝脏中经过糖异生,重新生成葡萄糖。【详析】A、无氧运动时丙酮酸分解为乳酸过程不产生ATP,A错误;B、由图可知,肌细胞无氧呼吸产生的乳酸能在肝脏中先转化为丙酮酸,再转化为葡萄糖,B正确;C、糖原分解需要酶催化,肌细胞中肌糖原不能分解产生葡萄糖可能是缺乏相关的酶,C正确;D、乳酸在肝脏中的代谢过程消耗掉乳酸,可防止乳酸堆积引起酸中毒,D正确。故选A。10.(2023·北京平谷·一模)为研究肠道菌群在有氧运动能力中的作用,用生理盐水溶解抗生素Abx后,灌入小鼠肠胃中,检测小鼠在跑步机上的运动表现,结果如图。下列分析错误的是(

)A.对照组用相同剂量的生理盐水灌入小鼠肠胃B.小鼠有氧呼吸产生CO2的阶段需要氧气的参与C.Abx清除肠道菌群应用了变量原则的“减法原理”D.结果表明肠道菌群促进了小鼠的有氧运动能力【答案】B〖祥解〗1、在对照实验中,控制自变量可采用加法原理或减法原理:加法原理指与常态比较人为增加某种影响因素的称为“加法原理”。减法原理指与常态比较人为去除某种影响因素的称为“减法原理”。2、“对照原则”是中学生物实验设计中最常用的原则,通过设置对照实验,既可排除无关变量的影响,又可增加实验结果的可信度和说服力。一个实验可包括实验组和对照组,实验组是接受实验变量处理的对象组,所处理的变量就是我们要研究的内容;对照组是不接受实验变量处理的对象组。【详析】A、这是对照实验,实验组用用生理盐水溶解抗生素Abx后灌入小鼠肠胃中,则对照组应用相同剂量的生理盐水灌入小鼠肠胃,A正确;B、小鼠有氧呼吸有三个阶段,产生CO2的阶段是有氧呼吸的第二阶段,而需要氧气参与的阶段是有氧呼吸第三阶段,B错误;C、Abx能清除肠道菌群,与正常相比减少了“肠道菌群”这种因素,应用了变量原则的“减法原理”,C正确;D、通过图中结果显示:Abx组比正常组的平均运动距离更短,说明肠道菌群能促进小鼠的有氧运动能力,D正确。故选B。11.(2024·北京丰台·二模)2021年我国科学家首次将CO2人工转化为淀粉,对实现碳中和意义重大。下列相关叙述正确的是()A.将CO2人工转化为淀粉的过程不需要额外输入能量B.生物群落与非生物环境之间的碳循环离不开分解者C.群落演替相对稳定后植物吸收与释放CO2速率大致相等D.该技术应用将使我们不再需要植树造林和寻找清洁能源【答案】B〖祥解〗碳元素在生物群落与无机环境之间以CO2的形式进行循环,通过光合作用进入生物群落,再通过呼吸作用和分解作用从生物群落进入无机环境。【详析】A、将CO2人工转化为淀粉的过程是吸能反应,需要额外输入能量,A错误;B、分解者可以把有机物分解为无机物,所以生物群落与非生物环境之间的碳循环离不开分解者,B正确;C、群落演替相对稳定后植物吸收CO2速率与所有生物释放的CO2大致相等,C错误;D、该技术应用依然离不开我们的植树造林和寻找清洁能源实现碳中和,D错误。故选B。12.(2024·北京昌平·二模)蓝细菌的光合作用过程需要较高浓度CO2,而空气中的CO2浓度一般较低,蓝细菌具有CO2浓缩机制如下图所示。研究还发现,R酶能催化O2与C5结合形成C3和C2,O2和CO2竞争性结合R酶同一位点。相关叙述正确的是(

)A.CO2以协助扩散方式通过光合片层膜B.R酶可抑制CO2固定,减少有机物积累C.浓缩机制可提高CO2与R酶的结合率D.转入转运蛋白基因后光合速率减小【答案】C〖祥解〗1、光合作用是指绿色植物通过叶绿体,利用光能,将二氧化碳和水转化成储存着能量的有机物,并且释放出氧气的过程。2、光合作用包括光反应阶段和暗反应阶段。(1)光反应阶段在叶绿体类囊体薄膜上进行,此过程必须有光、色素、光合作用有关的酶。具体反应步骤:①水的光解,水在光下分解成氧气和NADPH。②ATP的合成,ADP与Pi接受光能形成ATP。(2)暗反应在叶绿体基质中进行,有光或无光均可进行,反应步骤:①CO2的固定,CO2与C5结合生成两个C3。②C3的还原,C3在NADPH、酶、ATP等作用下,生成C5和有机物。【详析】A、依题意,图示为蓝细菌的CO2浓缩机制,据图可知,CO2进入光合片层膜要依赖CO2转运蛋白,同时消耗能量。因此,CO2以主动运输的方式通过光合片层膜,A错误;B、依题意,O2和CO2竞争性结合R酶同一位点,CO2浓缩机制可提高R酶周围CO2浓度。因此,当R酶周围CO2浓度高时,CO2与R酶的结合率高,促进CO2固定,提高光合作用速率;当R酶周围O2浓度高时,O2与R酶的结合率高,抑制CO2固定,降低光合作用速率,B错误;C、依题意,O2和CO2竞争性结合R酶同一位点,浓缩机制可提高R酶周围CO2浓度,提高CO2与R酶的结合率,C正确;D、转入HCO3−转运蛋白基因后,膜上HCO3−转运蛋白量增加,为暗反应提供的CO2增加,暗反应速率增加,促使光反应速率增加,从而使光合速率增加,D错误。故选C。13.(2024·北京昌平·二模)在活性氧的胁迫条件下,蛋白质复合体CDC48参与叶绿体内蛋白质降解的具体过程如下图,相关叙述错误的是(

A.叶绿体基质及类囊体膜上都含有蛋白质B.受损伤蛋白质通过自由扩散进入细胞质基质C.在蛋白酶体参与下,受损伤蛋白质的肽键断裂D.CDC48相关基因缺失突变导致受损伤蛋白积累【答案】B〖祥解〗叶绿体由双层膜包被,内部有许多基粒。每个基粒都由一个个圆饼状的囊状结构堆叠而成,这些囊状结构称为类囊体。吸收光能的4种色素就分布在类囊体的薄膜上。基粒与基粒之间充满了基质。每个基粒都含有两个以上的类囊体,多的可达100个以上。叶绿体内有如此众多的基粒和类囊体,极大地扩展了受光面积。【详析】A、叶绿体基质发生光合作用暗反应过程,类囊体膜上发生光合作用光反应过程,都有相应功能蛋白起作用。结合图示可知,叶绿体基质及类囊体膜上都含有蛋白质,A正确;BC、据图可知,受损伤蛋白质经蛋白质复合体CDC48作用后,再被蛋白酶体降解,可知,受损蛋白质是以大分子的形式从叶绿体进入细胞质基质,大分子物质不能以自由扩散的方式通过膜结构,B错误;C、在蛋白酶体参与下,受损伤蛋白质被降解,故受损伤蛋白质的肽键断裂,C正确;D、依题意,蛋白质复合体CDC48参与叶绿体内蛋白质降解,结合图示,若CDC48相关基因缺失,则细胞中蛋白质复合体CDC48缺失,导致受损伤蛋白积累,D正确。故选B。14.(2024·北京海淀·二模)环境适宜的条件下,研究人员测定某植物在不同温度下的净光合速率、气孔开放程度及胞间CO2浓度,结果如下图。下列叙述不正确的是()A.胞间CO2进入叶肉细胞叶绿体基质被光合作用暗反应利用B.5℃时,胞间CO2浓度较高的原因可能是光合作用相关酶的活性较低C.叶温在30℃~40℃时,净光合速率下降主要是叶片气孔关闭所致D.30℃下单位时间内有机物的积累量最大【答案】C〖祥解〗光合作用,通常是指绿色植物(包括藻类)吸收光能,把二氧化碳和水合成有机物,同时释放氧气的过程。光合作用分为光反应阶段和暗反应阶段。呼吸作用一般指机体将来自环境的或细胞自己储存的有机营养物的分子(如糖类、脂类、蛋白质等),通过一步步反应降解成较小的、简单的终产物(如二氧化碳、乳酸、乙醇等)的过程。光合与呼吸的差值可用净光合速率来表示,具体指标可以是氧气释放量、二氧化碳吸收量、有机物积累量等。【详析】A、胞间CO2进入叶肉细胞叶绿体基质被光合作用暗反应利用,被C5固定为C3,A正确;B、5℃时,可能由于光合作用相关酶的活性较低,导致光合速率下降,胞间CO2浓度较高,B正确;C、叶温在30℃~40℃时,气孔开放程度上升,胞间CO2上升,即CO2充足,不是净光合速率下降的主要原因,可能是由于高温导致酶部分失活,C错误;D、30℃下净光合速率最大,单位时间内有机物的积累量最大,D正确。故选C。15.(2024·北京通州·模拟预测)荔枝叶片发育过程中,净光合速率及相关指标的变化见下表。下列叙述错误的是(

)叶片发育时期相对叶面积(%)总叶绿素含量(mg/g·fw)净光合速率(μmolCO2/m2·s)a新叶展开前19—-2.8b新叶展开中871.11.6c新叶展开完成1002.92.7d新叶已成熟10011.15.8注“—”表示未测数据A.a组置于光温恒定密闭容器中会进行无氧呼吸B.b组净光合速率低的原因可能是叶绿素含量低C.d组的叶肉细胞叶绿体中类囊体数量少于c组D.叶面积逐渐增大是细胞分裂和细胞生长的结果【答案】C〖祥解〗1、温度对光合作用的影响:在最适温度下酶的活性最强,光合作用强度最大,当温度低于最适温度,光合作用强度随温度的增加而加强,当温度高于最适温度,光合作用强度随温度的增加而减弱。2、二氧化碳浓度对光合作用的影响:在一定范围内,光合作用强度随二氧化碳浓度的增加而增强.当二氧化碳浓度增加到一定的值,光合作用强度不再增强。3、光照强度对光合作用的影响:在一定范围内,光合作用强度随光照强度的增加而增强。当光照强度增加到一定的值,光合作用强度不再增强。【详析】A、表中信息表示,新叶展开前,叶片净光合速率为-2.8μmolCO2/m2.s,没有叶绿素,即植物只进行呼吸作用,由于是密闭的容器,导致容器内氧气越来越少而进行无氧呼吸,产生酒精,A正确;B、表中信息表示,叶绿素含量低,光能吸收减少,导致光合速率较低,B正确;C、叶绿素分布在叶绿体中的类囊体薄膜上,从表格中可推知,与c比较,d组中总叶绿素含量明显增多,因此与c比较,d组叶肉细胞的叶绿体中的类囊体增加,C错误;D、叶面积逐渐增大涉及到细胞数量和细胞种类增加,是细胞分裂和细胞生长的结果,D正确。故选C。16.(2024·北京海淀·一模)内生真菌生活在植物体内,植物为内生真菌提供光合产物和矿物质,内生真菌呼吸产生的CO2可供植物利用。在恒定光照强度下,研究人员测定了土壤不同N元素含量及有无内生真菌对植物光合速率的影响,结果如下图所示。下列相关分析,不正确的是(

)A.土壤含N量及CO2浓度都是影响光合速率的环境因素B.内生真菌呼吸产生的CO2可进入植物叶绿体基质参与暗反应C.图中A点制约植物光合速率的主要环境因素是光照强度D.在土壤高N含量下内生真菌可提高植物的光合速率【答案】C〖祥解〗分析题图,植物体的光合速率影响因素不仅有土壤含N量及CO2浓度,有无内生真菌也会影响植物光合速率。【详析】A、土壤含N量及CO2浓度都是影响光合速率的环境因素,其中土壤含N量的差异会影响光合速率,CO2浓度也会影响暗反应,进而影响光合速率,A正确;B、内生真菌呼吸会产生CO2,CO2进入植物叶绿体基质参与暗反应,B正确;C、该实验在恒定光照强度下进行,图中A点制约植物光合速率的主要环境因素是CO2浓度,C错误;D、据图可知,在土壤高N含量下内生真菌可提高植,物的光合速率,D正确。故选C。17.(2024·北京朝阳·一模)科研人员将某种滨藜分为两组,A组置于昼夜温度为23℃/18℃的环境中,该温度与其原生长区温度一致,B组置于昼夜温度为43℃/30℃的环境中。生长一段时间后,测定两组滨藜在不同温度下的光合速率,结果如图。相关叙述不合理的是()A.图中数据显示相同温度条件下A组滨藜的有机物积累速率均高于B组B.温度过高会通过提高酶的活性和气孔开放程度等机制使光合速率下降C.B组滨藜的最适温度高于A组说明滨藜对高温环境有一定的适应能力D.推测将原生长区的滨藜引种到炎热地区后可能会出现生长缓慢等现象【答案】B〖祥解〗1、净光合速率是植物绿色组织在光照条件下测得的值,单位时间内一定量叶面积CO2的吸收量或O2的释放量。净光合速率可用单位时间内O2的释放量、有机物的积累量、CO2的吸收量来表示。2、真正(总)光合速率=净光合速率+呼吸速率。【详析】A、图中数据显示相同温度条件下A组滨藜的有机物积累速率(图像中纵坐标为CO2吸收速率,繁反应的是净光合速率,也可用有机物积累速率表示)均高于B组,A正确;B、温度过高会通过降低酶的活性和气孔开放程度等机制使光合速率下降,B错误;C、从图中曲线可知B组滨藜的最适温度高于A组,而A组置于昼夜温度为23℃/18℃的环境中,该温度与其原生长区温度一致,B组置于昼夜温度为43℃/30℃的环境中,故说明滨藜对高温环境有一定的适应能力,C正确;D、B组滨藜处理温度高于A组,其净光合速率低于A组,推测将原生长区的滨藜引种到炎热地区后可能会出现生长缓慢等现象,D正确。故选B。18.(2024·北京东城·一模)研究人员在适宜光强和黑暗条件下分别测定发菜放氧和耗氧速率随温度的变化,绘制曲线如图所示。下列叙述错误的是()A.发菜生长的最适温度是25℃左右B.30℃时净光合速率是150μmol/(mg·h)C.35℃时光合作用速率等于呼吸作用速率D.在放氧和耗氧的过程中都有ATP的产生【答案】C〖祥解〗题图分析:在适宜光强下发菜放氧速率表示在不同温度下的净光合速率,黑暗条件下耗氧速率表示在不同温度下的呼吸速率。【详析】A、发菜的生长状况取决于净光合速率,根据图示信息,发菜在25℃左右放氧速率最大,即发菜生长的最适温度是25℃左右,A正确;B、30℃时发菜的放氧速率是150μmol/(mg·h),放氧速率表示净光合速率,所以30℃时净光合速率是150μmol/(mg·h),B正确;C、35℃时两曲线相交,由于放氧速率表示净光合速率,耗氧速率表示呼吸速率,所以该温度下净光合作用速率等于呼吸作用速率,C错误;D、放氧速率表示净光合速率,耗氧速率表示呼吸速率,细胞呼吸和光合作用过程均有ATP的产生,D正确。故选C。19.(2024·北京西城·一模)图a为三角叶滨藜和野姜的光合作用光响应曲线,图b为长期在一定光强下生长的两株三角叶滨藜的光合作用光响应曲线,相关说法错误的是(

)A.相同光强三角叶滨藜净光合速率大于野姜B.野姜能够在较低光强达到其最大光合速率C.PAR>800时增加CO2可能会提高野姜光合速率D.图b表明叶片的光合作用特性与其生长条件有关【答案】A〖祥解〗分析图a可知自变量为光合有效辐射和植物种类,因变量净光合速率;分析图b可知自变量为光合有效辐射和对三角叶滨藜的处理方式,因变量净光合速率。【详析】A、分析图a可知,当光照强度较弱时,相同光强三角叶滨藜净光合速率小于野姜,A错误;B、分析图a可知,当PAR>800时野姜净光合速率不再变化,而三角叶滨藜依然在上升,因此野姜能够在较低光强达到其最大光合速率,B正确;C、当PAR>800时野姜净光合速率不再变化,此时光照强度不再是限定因素,增加CO2可能会提高野姜光合速率,C正确;D、分析图a可知光下生长的三角叶滨藜光饱和点更大,因此表明叶片的光合作用特性与其生长条件有关,D正确。故选A。20.(2024·北京丰台·一模)CAM植物白天气孔关闭,夜晚气孔打开,以适应干旱环境。下图为其部分代谢途径,相关叙述不正确的是(

A.催化过程①和过程②所需的酶不同B.卡尔文循环的场所是叶绿体类囊体薄膜C.CAM植物白天气孔关闭可减少水分散失D.夜晚缺乏NADPH和ATP不能进行卡尔文循环【答案】B〖祥解〗具有CAM途径的植物称为CAM植物,在其所处的自然条件下,气孔白天关闭,夜晚张开,它们具有此途径,既维持水分平衡,又能同化二氧化碳。【详析】A、过程①是将CO2转化为C4,②是CO2固定,酶具有专一性,因此催化过程①和过程②所需的酶不同,A正确;B、据图可知,卡尔文循环即光合作用的暗反应阶段,CAM植物进行暗反应的场所是叶绿体基质,B错误;C、CAM植物白天关闭气孔,能减少水分散失以适应干旱环境,C正确;D、CAM植物在夜晚黑暗条件下不能制造有机物,因为没有光照,光反应不能进行,无法为暗反应提供ATP和NADPH,不能进行卡尔文循环,D正确。故选B。二、非选择题21.(2024·北京·模拟预测)科研人员探究了细胞中N基因对动物细胞利用能源物质途径的影响。(1)动物细胞可通过过程将有机物氧化分解并获得能量。(2)科研人员进行实验,操作和结果如图1。分析图1数据:三组培养基中,转N基因组细胞的相对数量均对照组,推测N基因促进细胞增殖。依据,可以看出相比于谷氨酰胺,葡萄糖对细胞增殖更重要。(3)研究人员对比转N基因小鼠与正常小鼠培养相同时间后培养液中的葡萄糖与乳酸水平,结果如图2,推测N蛋白。随后,研究者证实了该推测。(4)已知GLUT4是依赖胰岛素的葡萄糖转运蛋白,分布于肌肉和脂肪组织等。研究者设计了如下实验处理方案并预期了实验结果,表格中①应为。请写出该研究者的假设。组别实验材料实验处理检测指标和预期结果细胞相对数量检测液中葡萄糖余量实验组转N基因小鼠的脂肪细胞GLUT4阻断剂加入适量①实验组少于对照组实验组多于对照组对照组无【答案】(1)细胞呼吸(2)高于与1组和2组相比,5组和6组细胞的相对数量显著降低,3组和4组下降不明显(或与全营养相比,在缺少葡萄糖的培养基中细胞相对数量显著下降,而在缺少谷氨酰胺的培养条件下只有轻微的减弱)(3)促进细胞摄取葡萄糖进而增强无氧呼吸(4)胰岛素N基因通过促进(胰岛素依赖的)GLUT4转运葡萄糖而促进细胞增殖〖祥解〗胰岛素是机体唯一降血糖的激素,其作用为加速组织细胞对葡萄糖的摄取、利用、储存和转化,从而使血糖降低。【详析】(1)动物细胞可通过细胞呼吸过程将有机物氧化分解并获得能量。(2)分析图1数据:三组培养基中,转N基因组细胞的相对数量均高于对照组,推测N基因促进细胞增殖。依据与1组和2组相比,5组和6组细胞的相对数量显著降低,3组和4组下降不明显(或与全营养相比,在缺少葡萄糖的培养基中细胞相对数量显著下降,而在缺少谷氨酰胺的培养条件下只有轻微的减弱)。(3)研究人员对比转N基因小鼠与正常小鼠培养相同时间后培养液中的葡萄糖与乳酸水平,转N基因小鼠的葡萄糖浓度低于正常小鼠,而乳酸浓度高于正常小鼠,推测N蛋白促进细胞摄取葡萄糖进而增强无氧呼吸。(4)本实验目的是研究N基因通过能否促进(胰岛素依赖的)GLUT4转运葡萄糖而促进细胞增殖,对照组为转N基因小鼠的脂肪细胞+适量胰岛素,实验组为转N基因小鼠的脂肪细胞+GLUT4阻断剂+适量胰岛素,检测指标和预期结果为实验组葡萄糖余量多于对照组,细胞相对数量少于对照组,实验结论为N基因通过促进(胰岛素依赖的)GLUT4转运葡萄糖而促进细胞增殖,所以表格中①应为胰岛素,研究者的假设为N基因通过促进(胰岛素依赖的)GLUT4转运葡萄糖而促进细胞增殖。22.(2024·北京通州·模拟预测)Cox10基因功能缺失导致线粒体功能异常,进而诱发小鼠患心肌病,随病程发展会导致小鼠死亡。(1)线粒体是的主要场所,产生的ATP用以维持心脏功能。(2)Omal蛋白可以调节线粒体功能。为研究Omal蛋白和Cox10蛋白的关系,科研人员敲除小鼠相关基因、统计其生存率,结果如图1。双敲除组生存率Cox10基因单敲除组和WT组,说明Omal蛋白可以由Cox10蛋白功能异常导致的线粒体心肌病的发病进程。(3)活化的Omal蛋白可将长链Opal(-Opal)切割成短链(s-Opal),诱导线粒体融合,进而发挥作用。根据图2结果分析,组和组长链和短链Opal蛋白含量无显著差异,说明正常条件下Omal蛋白的活性很低;Cox10蛋白功能异常时可激活Omal蛋白的依据是。【答案】(1)有氧呼吸(2)低于(或显著低于)改善(或减缓)(3)142组1-Opal含量显著低于1组,s-Opal含量显著高于1组〖祥解〗有氧呼吸的第一、二、三阶段的场所依次是细胞质基质、线粒体基质和线粒体内膜。有氧呼吸第一阶段是葡萄糖分解成丙酮酸和[H],合成少量ATP;第二阶段是丙酮酸和水反应生成二氧化碳和[H],合成少量ATP;第三阶段是氧气和[H]反应生成水,合成大量ATP。【详析】(1)线粒体是细胞进行有氧呼吸的主要场所,在线粒体内可以进行有氧呼吸的第二阶段和第三阶段。(2)据图分析,实验的自变量是天数和基因情况,因变量是生存率,据图示曲线变化可知,双敲除组(敲除Omal和Cox10组别)生存率低于(或显著低于)Cox10基因单敲除组和WT组,说明Omal蛋白可以改善(或减缓)由Cox10蛋白功能异常导致的线粒体心肌病的发病进程。(3)分析题意,Opal(-Opal)是长链组,(s-Opal)是短链组,图中1组是WT组,可作为对照,根据图2结果分析,1组和4组长链和短链Opal蛋白含量无显著差异;据图可知,2组1-Opal含量显著低于1组,s-Opal含量显著高于1组,说明正常条件下Omal蛋白的活性很低,Cox10蛋白功能异常时可激活Omal蛋白。23.(2024·北京东城·二模)乳酸是一种需求量较大的工业原料,科研人员欲对酿酒酵母进行改造以进行乳酸生产。(1)培养基中的葡萄糖可作为为酿酒酵母提供营养。如图1,酿酒酵母导入乳酸脱氢酶基因后,无氧条件下发酵产物为,通过敲除丙酮酸脱羧酶基因获取高产乳酸的工程菌。该菌在有氧和无氧条件下均可产乳酸。(2)为实现对菌体代谢的动态调控,研究人员设计了光感应系统,并导入绿色荧光蛋白(GFP)基因以检测光感应系统的调控能力。①如图2,系统1在酵母中表达由V、L和H组成的融合蛋白。光照下,融合蛋白空间结构改变,后启动下游基因表达;在黑暗状态下,融合蛋白自发恢复到失活状态。②分别检测黑暗和光照下系统1的荧光强度,结果如图3。对照组能持续激活GFP表达。实验结果显示,可知系统1实现了光调控基因表达,但表达量较低。推测可能由于菌体密度高导致透光性差,不利于V-L-H对光照的响应。进一步优化设计出系统2(如图2),同等光照强度下,系统2荧光强度显著高于系统1,分析原因是。

③实验中发现黑暗条件下系统2的GFP基因有明显表达,为解决此问题,对系统2增加如图4所示组分,i、ii、iii依次为(填字母序号)。

A.持续表达型启动子

B.Pc120

C.PGALD.G80基因(G80蛋白可结合并抑制GAL4)E.GAL4基因(GAL4蛋白可结合并激活PGAL)F.PSD基因(含有PSD的融合蛋白在光下降解)(3)将优化后的系统2中GFP基因替换为乳酸脱氢酶基因,应用于酵母菌合成乳酸的发酵生产。发现在“先黑暗-后光照”的模式下乳酸产量显著高于全程光照的模式,请推测“先黑暗-后光照”模式下乳酸产量高的原因。【答案】(1)碳源乳酸、乙醇(2)①结合启动子PC120系统1在黑暗中荧光强度极低,光照后荧光强度升高但显著低于对照组系统2中光直接调节GAL4的表达,GAL4进一步调控GFP表达,分级调节具有放大效应ADF(或AFD)(3)发酵早期处于黑暗中,酵母菌不合成乳酸,物质和能量主要用于菌体生长繁殖,当菌体达到一定数量后,照光启动乳酸合成,因此乳酸总产量高。全程光照时,持续合成乳酸,消耗物质和能量较多,影响酵母菌生长繁殖,乳酸总产量低。〖祥解〗基因工程技术的基本步骤:(1)目的基因的获取:方法有从基因文库中获取、利用PCR技术扩增和人工合成;(2)基因表达载体的构建:是基因工程的核心步骤,基因表达载体包括目的基因、启动子、终止子和标记基因等;(3)将目的基因导入受体细胞:根据受体细胞不同,导入的方法也不一样。将目的基因导入植物细胞的方法有农杆菌转化法、基因枪法和花粉管通道法;将目的基因导入动物细胞最有效的方法是显微注射法;将目的基因导入微生物细胞的方法是感受态细胞法;(4)目的基因的检测与鉴定:分子水平上的检测:①检测转基因生物染色体的DNA是否插入目的基因--DNA分子杂交技术;②检测目的基因是否转录出了mRNA--分子杂交技术;③检测目的基因是否翻译成蛋白质--抗原-抗体杂交技术;个体水平上的鉴定:抗虫鉴定、抗病鉴定、活性鉴定等。【详析】(1)培养基中的葡萄糖可作为碳源为酿酒酵母提供营养;由图1可知,酿酒酵母导入乳酸脱氢酶基因后表达出乳酸脱氢酶,在无氧条件下将丙酮酸转化为乳酸,同时丙酮酸在丙酮酸脱羧酶催化作用下转化为乙醛,进而转化为乙醇,所以酿酒酵母无氧条件下发酵产物为乳酸、乙醇;(2)①由图2可以看出,光照下融合蛋白空间结构改变,融合蛋白与PC120启动子结合后启动下游基因表达;②由图3可以看出,系统1在黑暗中荧光强度极低,光照后荧光强度升高但显著低于对照组,可知系统1实现了光调控基因表达,但表达量较低;由图2可知系统2在同等光照强度下,系统2中光直接调节GAL4的表达,GAL4进一步调控GFP表达,分级调节具有放大效应,所以系统2荧光强度显著高于系统1;③实验中发现黑暗条件下系统2的GFP基因有明显表达,为解决此问题,对系统2增加如图4所示组分,i、ii、ii依次为持续表达型启动子、G80基因(G80蛋白可结合并抑制GAL4)、PSD基因(含有PSD的融合蛋白在光下降解)或持续表达型启动子、PSD基因(含有PSD的融合蛋白在光下降解)、G80基因(G80蛋白可结合并抑制GAL4),即选ADF或AFD;(3)在“先黑暗-后光照”的模式下乳酸产量显著高于全程光照的模式,可能的原因是发酵早期处于黑暗中,酵母菌不合成乳酸,物质和能量主要用于菌体生长繁殖,当菌体达到一定数量后,照光启动乳酸合成,因此乳酸总产量高。全程光照时,持续合成乳酸,消耗物质和能量较多,影响酵母菌生长繁殖,乳酸总产量低。24.(2024·北京朝阳·二模)运动一定时间之后,机体表现出运动耐力下降的现象。研究者进行实验探究上述现象的机制。(1)高强度运动初期时,氧气与[H]在(场所)结合生成水,并释放大量能量,此过程称为氧化磷酸化,持续高强度运动消耗大量氧气,使肌细胞处于低氧环境。(2)研究表明P酶通过提高氧化磷酸化强度进而提升运动耐力。AR蛋白可将乳酸转移至P酶特定氨基酸位点(乳酰化修饰)。研究者用小鼠进行持续高强度运动模拟实验,检测肌细胞中相关指标,结果如下表检测指标运动0min运动30minP酶相对活性(%)10035P酶乳酰化水平(%)970①据表中数据推测持续高强度运动诱发,减弱骨骼肌氧化磷酸强度,使运动耐力下降。②敲除小鼠AR基因,进行持续高强度运动模拟实验,发现P酶活性始终高于野生型。③研究者用小鼠肌细胞进行如图1中实验,推测:AR蛋白使P酶336位氨基酸发生乳酰化修饰,依据是。

(3)H蛋白是细胞中的氧含量感应蛋白,可感应氧气含量变化从而调控AR蛋白降解。研究者进行图2中实验并检测AR蛋白、H蛋白含量。

由结果可知,持续高强度运动导致AR蛋白含量升高的原因是持续高强度运动使肌细胞氧气浓度下降,,AR蛋白含量升高。(4)上述研究揭示了持续高强度运动后运动耐力降低与AR蛋白、P酶、氧化磷酸化的关系。有研究表明氧化磷酸化过程会有活性氧产生,超过一定水平后诱发细胞凋亡。有人认为AR蛋白表达量较低的人运动耐力强,适宜做长时间持续高强度运动。结合本研究评价该观点是否合理,并说明理由。【答案】(1)线粒体内膜(2)P酶乳酰化修饰使其活性降低四组实验中只有第Ⅱ组P酶乳酰化,P酶活性最低,第Ⅳ组(氨基酸替换)实验结果与Ⅰ、Ⅲ组相近(3)H蛋白感应(氧气浓度下降)并减弱对AR蛋白的降解作用(4)合理,持续高强度运动时,AR蛋白表达量低,抑制P酶活性能力较弱,可促进肌细胞氧化磷酸化反应,可以提高运动耐力不合理,持续高强度运动时,AR蛋白表达量低,抑制P酶活性能力较弱,导致活性氧积累,易诱发肌细胞凋亡,因此高强度运动时间过长有可能损伤肌肉细胞〖祥解〗氧气与[H]结合发生在有氧呼吸第三阶段,场所是线粒体内膜。【详析】(1)氧气与[H]结合生成水发生在线粒体内膜。(2)①分析表中数据,持续高强度运动30min后,P酶乳酰化水平升高,P酶相对活性下降,说明持续高强度运动诱发P酶乳酰化修饰使其活性降低,减弱骨骼肌氧化磷酸强度,使运动耐力下降。③分析图1实验结果,四组实验中只有第Ⅱ组P酶乳酰化,P酶活性最低,第Ⅳ组(氨基酸替换)实验结果与Ⅰ、Ⅲ组相近,推测AR蛋白使P酶336位氨基酸发生乳酰化修饰,使P酶活性下降。(3)由结果可知,干扰H蛋白的表达使H蛋白无法表达,AR蛋白增多,而氧气含量变化可调控AR蛋白降解,可推测是持续高强度运动使肌细胞氧气浓度下降,H蛋白感应(氧气浓度下降)并减弱对AR蛋白的降解作用,AR蛋白含量升高。(4)此观点我们可辩证的看待,从两方面进行分析:合理,持续高强度运动时,AR蛋白表达量低,抑制P酶活性能力较弱,可促进肌细胞氧化磷酸化反应,可以提高运动耐力。不合理,持续高强度运动时,AR蛋白表达量低,抑制P酶活性能力较弱,导致活性氧积累,易诱发肌细胞凋亡,因此高强度运动时间过长有可能损伤肌肉细胞。25.(2024·北京西城·一模)BAT(褐色脂肪组织)细胞含有大量线粒体,具有分解脂肪和产热的功能,其数量及代谢异常与肥胖、衰老等现象相关。(1)图1示有氧呼吸第三阶段,H+通过复合体I、Ⅲ、Ⅳ运至线粒体膜间隙,并顺浓度梯度通过(细胞结构)上的ATP合酶,生成大量ATP。(2)图2为BAT细胞在寒冷刺激下增加产热的机制:产热复合体提高线粒体中Ca2+浓度→促进有氧呼吸第二阶段(三羧酸循环)→提高H+跨膜浓度梯度→→、产热增加。(3)产热复合体包含E、M和UCP1三种蛋白质。为研究三者的互作情况,构建了三种质粒,分别表达UCPI-HA融合蛋白、E-FLAG融合蛋白、M-FLAG融合蛋白,并获得了转入不同质粒组合的细胞。先利用抗HA抗体偶联磁珠对各组总蛋白进行收集,将收集的蛋白电泳,再分别用抗FLAG抗体与抗HA抗体进行检测,结果如图3。分析图2产热复合体中的A、B分别为蛋白。(4)BAT细胞在凋亡过程中会释放肌苷,与相关细胞膜上受体结合发挥作用。用肌苷处理健康BAT和WAT(白色脂肪细胞,主要储存脂肪),发现二者UCPI基因的表达量均显著提高。阐释BAT凋亡时释放肌苷的意义。(5)ENT1是肌苷转运蛋白,在BAT细胞高表达。研究表明,抑制ENT1可以增加胞外肌苷水平,增强细胞产热能力。有人提出可通过抑制ENT1治疗肥胖,从稳态与平衡的角度评价该方案并说明理由。【答案】(1)线粒体内膜(2)UCPl将H+运至线粒体基质,减小了膜两侧H+的跨膜浓度梯度ATP合成比例减少(3)M、E(4)BAT细胞凋亡时释放肌苷,可促进健康的BAT和WAT细胞UCPl基因表达而增加产热,从而维持机体的体温平衡(5)有一定的合理性。抑制ENTl可提高胞外肌苷水平,促进BAT和WAT细胞有机物分解,增加产热,达到减重的效果。然而ENTl通过调节胞外肌苷水平,维持体温相对稳定,抑制ENTl可能破坏机体体温平衡的稳态〖祥解〗有氧呼吸的过程:第一阶段:细胞质的基质第二阶段:线粒体基质第三阶段:线粒体的内膜【详析】(1)由图1可知,H+通过复合体I、Ⅲ、Ⅳ运至线粒体膜间隙,并顺浓度梯度通过线粒体内膜(细胞结构)上的ATP合酶,完成有氧呼吸第三阶段的反应,生成大量ATP;(2)由图2可知,产热复合体提高线粒体中Ca2+浓度,促进有氧呼吸第二阶段(三羧酸循环),提高H+跨膜浓度梯度,促使UCPl将H+运至线粒体基质,减小了膜两侧H+的浓度梯度,使ATP合成比例减少、产热增加;(3)由图3可知,分别用抗FLAG抗体与抗HA抗体进行检测后,电泳图显示几乎不含UCPI-HA融合蛋白,由此可推断产热复合体中的A、B分别为M、E蛋白;(4)由题意可知,BAT细胞在凋亡过程中会释放肌苷,可促进健康的BAT和WAT细胞UCPl基因表达而增加产热,从而维持机体的体温平衡;(5)由于ENT1是肌苷转运蛋白,在BAT细胞高表达。如果抑制ENT1可以增加胞外肌苷水平,增强细胞产热能力,因此通过抑制ENT1治疗肥胖有一定的合理性。因为抑制ENTl可提高胞外肌苷水平,促进BAT和WAT细胞有机物分解,增加产热,达到减重的效果。然而ENTl通过调节胞外肌苷水平,维持体温相对稳定,抑制ENTl可能破坏机体体温平衡的稳态。26.(2024·北京密云·模拟预测)学习以下资料,回答(1)-(4)问题。细胞感知氧气的分子机制人类和大多数动物主要进行有氧呼吸,其体内细胞感知、适应不同氧气环境的基本原理2019年被科学家揭示、即人体缺氧时,会有超过300种基因被激活,或者加快红细胞生成

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论