广东省广州市岭南中学2025届高三最后一模数学试题含解析_第1页
广东省广州市岭南中学2025届高三最后一模数学试题含解析_第2页
广东省广州市岭南中学2025届高三最后一模数学试题含解析_第3页
广东省广州市岭南中学2025届高三最后一模数学试题含解析_第4页
广东省广州市岭南中学2025届高三最后一模数学试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省广州市岭南中学2025届高三最后一模数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是过抛物线焦点的弦,是原点,则()A.-2 B.-4 C.3 D.-32.已知集合,,则A. B.C. D.3.已知是虚数单位,若,则()A. B.2 C. D.34.已知函数,若,则等于()A.-3 B.-1 C.3 D.05.已知命题,且是的必要不充分条件,则实数的取值范围为()A. B. C. D.6.某几何体的三视图如右图所示,则该几何体的外接球表面积为()A. B.C. D.7.在中,已知,,,为线段上的一点,且,则的最小值为()A. B. C. D.8.某公园新购进盆锦紫苏、盆虞美人、盆郁金香,盆盆栽,现将这盆盆栽摆成一排,要求郁金香不在两边,任两盆锦紫苏不相邻的摆法共()种A. B. C. D.9.已知函数的图象的一条对称轴为,将函数的图象向右平行移动个单位长度后得到函数图象,则函数的解析式为()A. B.C. D.10.已知集合A={0,1},B={0,1,2},则满足A∪C=B的集合C的个数为()A.4 B.3 C.2 D.111.已知,,,则a,b,c的大小关系为()A. B. C. D.12.复数满足(为虚数单位),则的值是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.的二项展开式中,含项的系数为__________.14.角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点,则的值是.15.已知函数,若关于的方程恰有四个不同的解,则实数的取值范围是______.16.在二项式的展开式中,的系数为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)诚信是立身之本,道德之基,我校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“”表示每周“水站诚信度”,为了便于数据分析,以四周为一周期,如表为该水站连续十二周(共三个周期)的诚信数据统计:第一周第二周第三周第四周第一周期第二周期第三周期(Ⅰ)计算表中十二周“水站诚信度”的平均数;(Ⅱ)若定义水站诚信度高于的为“高诚信度”,以下为“一般信度”则从每个周期的前两周中随机抽取两周进行调研,计算恰有两周是“高诚信度”的概率;(Ⅲ)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动,根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.18.(12分)已知函数.(1)当时,求函数的值域.(2)设函数,若,且的最小值为,求实数的取值范围.19.(12分)为贯彻十九大报告中“要提供更多优质生态产品以满足人民日益增长的优美生态环境需要”的要求,某生物小组通过抽样检测植物高度的方法来监测培育的某种植物的生长情况.现分别从、、三块试验田中各随机抽取株植物测量高度,数据如下表(单位:厘米):组组组假设所有植株的生长情况相互独立.从、、三组各随机选株,组选出的植株记为甲,组选出的植株记为乙,组选出的植株记为丙.(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有数据的平均数记为.从、、三块试验田中分别再随机抽取株该种植物,它们的高度依次是、、(单位:厘米).这个新数据与表格中的所有数据构成的新样本的平均数记为,试比较和的大小.(结论不要求证明)20.(12分)在平面直角坐标系中,为直线上动点,过点作抛物线:的两条切线,,切点分别为,,为的中点.(1)证明:轴;(2)直线是否恒过定点?若是,求出这个定点的坐标;若不是,请说明理由.21.(12分)已知首项为2的数列满足.(1)证明:数列是等差数列.(2)令,求数列的前项和.22.(10分)已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:(是参数).(1)若直线l与曲线C相交于A、B两点,且,试求实数m值.(2)设为曲线上任意一点,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

设,,设:,联立方程得到,计算得到答案.【详解】设,,故.易知直线斜率不为,设:,联立方程,得到,故,故.故选:.【点睛】本题考查了抛物线中的向量的数量积,设直线为可以简化运算,是解题的关键.2、D【解析】

因为,,所以,,故选D.3、A【解析】

直接将两边同时乘以求出复数,再求其模即可.【详解】解:将两边同时乘以,得故选:A【点睛】考查复数的运算及其模的求法,是基础题.4、D【解析】分析:因为题设中给出了的值,要求的值,故应考虑两者之间满足的关系.详解:由题设有,故有,所以,从而,故选D.点睛:本题考查函数的表示方法,解题时注意根据问题的条件和求解的结论之间的关系去寻找函数的解析式要满足的关系.5、D【解析】

求出命题不等式的解为,是的必要不充分条件,得是的子集,建立不等式求解.【详解】解:命题,即:,是的必要不充分条件,,,解得.实数的取值范围为.故选:.【点睛】本题考查根据充分、必要条件求参数范围,其思路方法:(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意区间端点值的检验.6、A【解析】

由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,结合直观图判断外接球球心的位置,求出半径,代入求得表面积公式计算.【详解】由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,高为2,底面为等腰直角三角形,斜边长为,如图:的外接圆的圆心为斜边的中点,,且平面,,的中点为外接球的球心,半径,外接球表面积.故选:A【点睛】本题考查了由三视图求几何体的外接球的表面积,根据三视图判断几何体的结构特征,利用几何体的结构特征与数据求得外接球的半径是解答本题的关键.7、A【解析】

在中,设,,,结合三角形的内角和及和角的正弦公式化简可求,可得,再由已知条件求得,,,考虑建立以所在的直线为轴,以所在的直线为轴建立直角坐标系,根据已知条件结合向量的坐标运算求得,然后利用基本不等式可求得的最小值.【详解】在中,设,,,,即,即,,,,,,,,即,又,,,则,所以,,解得,.以所在的直线为轴,以所在的直线为轴建立如下图所示的平面直角坐标系,则、、,为线段上的一点,则存在实数使得,,设,,则,,,,,消去得,,所以,,当且仅当时,等号成立,因此,的最小值为.故选:A.【点睛】本题是一道构思非常巧妙的试题,综合考查了三角形的内角和定理、两角和的正弦公式及基本不等式求解最值问题,解题的关键是理解是一个单位向量,从而可用、表示,建立、与参数的关系,解决本题的第二个关键点在于由,发现为定值,从而考虑利用基本不等式求解最小值,考查计算能力,属于难题.8、B【解析】

间接法求解,两盆锦紫苏不相邻,被另3盆隔开有,扣除郁金香在两边有,即可求出结论.【详解】使用插空法,先排盆虞美人、盆郁金香有种,然后将盆锦紫苏放入到4个位置中有种,根据分步乘法计数原理有,扣除郁金香在两边,排盆虞美人、盆郁金香有种,再将盆锦紫苏放入到3个位置中有,根据分步计数原理有,所以共有种.故选:B.【点睛】本题考查排列应用问题、分步乘法计数原理,不相邻问题插空法是解题的关键,属于中档题.9、C【解析】

根据辅助角公式化简三角函数式,结合为函数的一条对称轴可求得,代入辅助角公式得的解析式.根据三角函数图像平移变换,即可求得函数的解析式.【详解】函数,由辅助角公式化简可得,因为为函数图象的一条对称轴,代入可得,即,化简可解得,即,所以将函数的图象向右平行移动个单位长度可得,则,故选:C.【点睛】本题考查了辅助角化简三角函数式的应用,三角函数对称轴的应用,三角函数图像平移变换的应用,属于中档题.10、A【解析】

由可确定集合中元素一定有的元素,然后列出满足题意的情况,得到答案.【详解】由可知集合中一定有元素2,所以符合要求的集合有,共4种情况,所以选A项.【点睛】考查集合并集运算,属于简单题.11、D【解析】

与中间值1比较,可用换底公式化为同底数对数,再比较大小.【详解】,,又,∴,即,∴.故选:D.【点睛】本题考查幂和对数的大小比较,解题时能化为同底的化为同底数幂比较,或化为同底数对数比较,若是不同类型的数,可借助中间值如0,1等比较.12、C【解析】

直接利用复数的除法的运算法则化简求解即可.【详解】由得:本题正确选项:【点睛】本题考查复数的除法的运算法则的应用,考查计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

写出二项展开式的通项,然后取的指数为求得的值,则项的系数可求得.【详解】,由,可得.含项的系数为.故答案为:【点睛】本题考查了二项式定理展开式、需熟记二项式展开式的通项公式,属于基础题.14、【解析】试题分析:由三角函数定义知,又由诱导公式知,所以答案应填:.考点:1、三角函数定义;2、诱导公式.15、【解析】

设,判断为偶函数,考虑x>0时,的解析式和零点个数,利用导数分析函数的单调性,作函数大致图象,即可得到的范围.【详解】设,则在是偶函数,当时,,由得,记,,,故函数在增,而,所以在减,在增,,当时,,当时,,因此的图象为因此实数的取值范围是.【点睛】本题主要考查了函数的零点的个数问题,涉及构造函数,函数的奇偶性,利用导数研究函数单调性,考查了数形结合思想方法,以及化简运算能力和推理能力,属于难题.16、60【解析】

直接利用二项式定理计算得到答案.【详解】二项式的展开式通项为:,取,则的系数为.故答案为:.【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ);(Ⅲ)两次活动效果均好,理由详见解析.【解析】

(Ⅰ)结合表中的数据,代入平均数公式求解即可;(Ⅱ)设抽到“高诚信度”的事件为,则抽到“一般信度”的事件为,则随机抽取两周,则有两周为“高诚信度”事件为,利用列举法列出所有的基本事件和事件所包含的基本事件,利用古典概型概率计算公式求解即可;(Ⅲ)结合表中的数据判断即可.【详解】(Ⅰ)表中十二周“水站诚信度”的平均数.(Ⅱ)设抽到“高诚信度”的事件为,则抽到“一般信度”的事件为,则随机抽取两周均为“高诚信度”事件为,总的基本事件为共15种,事件所包含的基本事件为共10种,由古典概型概率计算公式可得,.(Ⅲ)两次活动效果均好.理由:活动举办后,“水站诚信度'由和看出,后继一周都有提升.【点睛】本题考查平均数公式和古典概型概率计算公式;考查运算求解能力;利用列举法正确列举出所有的基本事件是求古典概型概率的关键;属于中档题、常考题型.18、(1);(2).【解析】

(1)令,求出的范围,再由指数函数的单调性,即可求出结论;(2)对分类讨论,分别求出以及的最小值或范围,与的最小值建立方程关系,求出的值,进而求出的取值关系.【详解】(1)当时,,令,∵∴,而是增函数,∴,∴函数的值域是.(2)当时,则在上单调递减,在上单调递增,所以的最小值为,在上单调递增,最小值为,而的最小值为,所以这种情况不可能.当时,则在上单调递减且没有最小值,在上单调递增最小值为,所以的最小值为,解得(满足题意),所以,解得.所以实数的取值范围是.【点睛】本题考查复合函数的值域与分段函数的最值,熟练掌握二次函数图像和性质是解题的关键,属于中档题.19、(1);(2);(3).【解析】

设事件为“甲是组的第株植物”,事件为“乙是组的第株植物”,事件为“丙是组的第株植物”,、、、,可得出.(1)设事件为“丙的高度小于厘米”,可得,且、互斥,利用互斥事件的概率公式可求得结果;(2)设事件为“甲的高度大于乙的高度”,列举出符合题意的基本事件,利用互斥事件的概率加法公式可求得所求事件的概率;(3)根据题意直接判断和的大小即可.【详解】设事件为“甲是组的第株植物”,事件为“乙是组的第株植物”,事件为“丙是组的第株植物”,、、、.由题意可知,、、、.(1)设事件为“丙的高度小于厘米”,由题意知,又与互斥,所以事件的概率;(2)设事件为“甲的高度大于乙的高度”.由题意知.所以事件的概率;(3).【点睛】本题考查概率的求法,考查互斥事件加法公式、相互独立事件概率乘法公式等基础知识,考查运算求解能力,是中等题.20、(1)见解析(2)直线过定点.【解析】

(1)设出两点的坐标,利用导数求得切线的方程,设出点坐标并代入切线的方程,同理将点坐标代入切线的方程,利用韦达定理求得线段中点的横坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论