




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年甘肃省临夏州中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)下列各数中,是无理数的是()A. B. C. D.0.131332.(3分)马家窑彩陶绚丽典雅,符号丰富,被称为彩陶文化的“远古之光”.如图是一件马家窑彩陶作品的立体图形,有关其三视图说法正确的是()A.主视图和左视图完全相同 B.主视图和俯视图完全相同 C.左视图和俯视图完全相同 D.三视图各不相同3.(3分)据央视财经《经济信息联播》消息:甘肃天水凭借一碗香喷喷的麻辣烫成为最“热辣滚烫”的顶流.2024年3月份,天水市累计接待游客464万人次,旅游综合收入27亿元.将数据“27亿”用科学记数法表示为()A.2.7×108 B.0.27×1010 C.2.7×109 D.27×1084.(3分)下列各式运算结果为a5的是()A.a2+a3 B.a2•a3 C.a10÷a2 D.(a2)35.(3分)一次函数y=kx﹣1(k≠0)的函数值y随x的增大而减小,它的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.(3分)如图,AB是⊙O的直径,∠E=35°,则∠BOD=()A.80° B.100° C.120° D.110°7.(3分)端午节期间,某商家推出“优惠酬宾”活动,决定每袋粽子降价2元销售.细心的小夏发现,降价后用240元可以比降价前多购买10袋,求:每袋粽子的原价是多少元?设每袋粽子的原价是x元,所得方程正确的是()A. B. C. D.8.(3分)如图,在△ABC中,AB=AC=5,sinB,则BC的长是()A.3 B.6 C.8 D.99.(3分)如图,O是坐标原点,菱形ABOC的顶点B在x轴的负半轴上,顶点C的坐标为(3,4),则顶点A的坐标为()A.(﹣4,2) B.(,4) C.(﹣2,4) D.(﹣4,)10.(3分)如图1,矩形ABCD中,BD为其对角线,一动点P从D出发,沿着D→B→C的路径行进,过点P作PQ⊥CD,垂足为Q.设点P的运动路程为x,PQ﹣DQ为y,y与x的函数图象如图2,则AD的长为()A. B. C. D.二、填空题:本大题共6小题,每小题3分,共18分.11.(3分)因式分解:x2.12.(3分)“香渡栏干屈曲,红妆映、薄绮疏棂.”图1窗棂的外边框为正六边形(如图2),则该正六边形的每个内角为.13.(3分)若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为.14.(3分)如图,在△ABC中,点A的坐标为(0,1),点B的坐标为(4,1),点C的坐标为(3,4),点D在第一象限(不与点C重合),且△ABD与△ABC全等,点D的坐标是.15.(3分)如图,对折边长为2的正方形纸片ABCD,OM为折痕,以点O为圆心,OM为半径作弧,分别交AD,BC于E,F两点,则的长度为(结果保留π).16.(3分)如图,等腰△ABC中,AB=AC=2,∠BAC=120°,将△ABC沿其底边中线AD向下平移,使A的对应点A′满足AA′AD,则平移前后两三角形重叠部分的面积是.三、解答题:本大题共6小题,共32分.解答时,应写出必要的文字说明、证明过程或演算步骤.17.(4分)计算:||﹣()﹣1+20250.18.(4分)化简:(a+1).19.(4分)解不等式组:.20.(6分)物理变化和化学变化的区别在于是否有新物质的生成.某学习小组在延时课上制作了A,B,C,D四张卡片,四张卡片除图片内容不同外,其他没有区别,放置于暗箱中摇匀.(1)小临从四张卡片中随机抽取一张,抽中C卡片的概率是;(2)小夏从四张卡片中随机抽取两张,用列表法或画树状图法求小夏抽取两张卡片内容均为化学变化的概率.21.(6分)根据背景素材,探索解决问题.平面直角坐标系中画一个边长为2的正六边形ABCDEF背景素材六等分圆原理,也称为圆周六等分问题,是一个古老而经典的几何问题,旨在解决如何使用直尺和圆规将一个圆分成六等份的问题.这个问题由欧几里得在其名著《几何原本》中详细阐述.已知条件点C与坐标原点O重合,点D在x轴的正半轴上且坐标为(2,0).操作步骤①分别以点C,D为圆心,CD长为半径作弧,两弧交于点P;②以点P为圆心,PC长为半径作圆;③以CD的长为半径,在⊙P上顺次截取;④顺次连接DE,EF,FA,AB,BC.得到正六边形ABCDEF.问题解决任务一根据以上信息,请你用不带刻度的直尺和圆规,在图中完成这道作图题(保留作图痕迹,不写作法)任务二将正六边形ABCDEF绕点D顺时针旋转60°,直接写出此时点E所在位置的坐标:.22.(8分)乾元塔(图1)位于临夏州临夏市的北山公园内,共九级,为砼框架式结构,造型独特别致,远可眺太子山露骨风月,近可收临夏市城建全貌,巍巍峨峨,傲立苍穹.某校数学兴趣小组在学习了“解直角三角形”之后,开展了测量乾元塔高度AB的实践活动.A为乾元塔的顶端,AB⊥BC,点C,D在点B的正东方向,在C点用高度为1.6米的测角仪(即CE=1.6米)测得A点仰角为37°,向西平移14.5米至点D,测得A点仰角为45°,请根据测量数据,求乾元塔的高度AB.(结果保留整数,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)四、解答题:本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.23.(7分)环球网消息称:近年来的电动自行车火灾事故80%都是充电时发生的,超过一半的电动自行车火灾发生在夜间充电的过程中.为了规避风险,某校政教处对学生进行规范充电培训活动,并对培训效果按10分制进行检测评分.为了解这次培训的效果,现从各年级随机抽取男、女生各10名的检测成绩作为样本进行整理,并绘制成如下不完整的统计图表:抽取的10名女生检测成绩统计表成绩/分678910人数12m3n注:10名女生检测成绩的中位数为8.5分.请根据以上信息,完成下列问题:(1)样本中男生检测成绩为10分的学生数是,众数为分;(2)女生检测成绩表中的m=,n=;(3)已知该校有男生545人,女生360人,若认定检测成绩不低于9分为“优秀”,估计全校检测成绩达到“优秀”的人数.24.(7分)如图,直线l与⊙O相切于点D,AB为⊙O的直径,过点A作AE⊥l于点E,延长AB交直线l于点C.(1)求证:AD平分∠CAE;(2)如果BC=1,DC=3,求⊙O的半径.25.(8分)如图,直线y=kx与双曲线y交于A,B两点,已知A点坐标为(a,2).(1)求a,k的值;(2)将直线y=kx向上平移m(m>0)个单位长度,与双曲线y在第二象限的图象交于点C,与x轴交于点E,与y轴交于点P,若PE=PC,求m的值.26.(8分)如图1,在矩形ABCD中,点E为AD边上不与端点重合的一动点,点F是对角线BD上一点,连接BE,AF交于点O,且∠ABE=∠DAF.【模型建立】(1)求证:AF⊥BE;【模型应用】(2)若AB=2,AD=3,DFBF,求DE的长;【模型迁移】(3)如图2,若矩形ABCD是正方形,DFBF,求的值.27.(10分)在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,作直线BC.(1)求抛物线的解析式.(2)如图1,点P是线段BC上方的抛物线上一动点,过点P作PQ⊥BC,垂足为Q,请问线段PQ是否存在最大值?若存在,请求出最大值及此时点P的坐标;若不存在请说明理由.(3)如图2,点M是直线BC上一动点,过点M作线段MN∥OC(点N在直线BC下方),已知MN=2,若线段MN与抛物线有交点,请直接写出点M的横坐标xM的取值范围.
2024年甘肃省临夏州中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)下列各数中,是无理数的是()A. B. C. D.0.13133【答案】A【解答】解:A、是无理数,故此选项符合题意;B、是有理数,故此选项不符合题意;C、,是有理数,故此选项不符合题意;D、0.13133是有理数,故此选项不符合题意;故选:A.2.(3分)马家窑彩陶绚丽典雅,符号丰富,被称为彩陶文化的“远古之光”.如图是一件马家窑彩陶作品的立体图形,有关其三视图说法正确的是()A.主视图和左视图完全相同 B.主视图和俯视图完全相同 C.左视图和俯视图完全相同 D.三视图各不相同【答案】D【解答】解:该几何体的三视图各不相同,主视图的中间处有两个“耳朵”而左视图则没有;俯视图是三个同心圆(夹在中间的圆由虚线构成).故选:D.3.(3分)据央视财经《经济信息联播》消息:甘肃天水凭借一碗香喷喷的麻辣烫成为最“热辣滚烫”的顶流.2024年3月份,天水市累计接待游客464万人次,旅游综合收入27亿元.将数据“27亿”用科学记数法表示为()A.2.7×108 B.0.27×1010 C.2.7×109 D.27×108【答案】C【解答】解:27亿=2700000000=2.7×109.故选:C.4.(3分)下列各式运算结果为a5的是()A.a2+a3 B.a2•a3 C.a10÷a2 D.(a2)3【答案】B【解答】解:A、a2与a3不属于同类项,不能合并,故A不符合题意;B、a2•a3=a5,故B符合题意;C、a10÷a2=x8,故C不符合题意;D、(a2)3=a6,故D不符合题意;故选:B.5.(3分)一次函数y=kx﹣1(k≠0)的函数值y随x的增大而减小,它的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】A【解答】解:∵一次函数y=kx﹣1(k≠0)的函数值y随x的增大而减小,∴k<0,b=﹣1<0,∴该函数图象经过第二、三、四象限,不经过第一象限,故选:A.6.(3分)如图,AB是⊙O的直径,∠E=35°,则∠BOD=()A.80° B.100° C.120° D.110°【答案】D【解答】解:∵∠E=35°,∴∠AOD=2∠E=70°,∴∠BOD=180°﹣70°=110°.故选:D.7.(3分)端午节期间,某商家推出“优惠酬宾”活动,决定每袋粽子降价2元销售.细心的小夏发现,降价后用240元可以比降价前多购买10袋,求:每袋粽子的原价是多少元?设每袋粽子的原价是x元,所得方程正确的是()A. B. C. D.【答案】C【解答】解:由题意可得,10,故选:C.8.(3分)如图,在△ABC中,AB=AC=5,sinB,则BC的长是()A.3 B.6 C.8 D.9【答案】B【解答】解:过点A作BC的垂线,垂足为M,在Rt△ABM中,sinB,∴AM4,∴BM.又∵AB=AC,∴BC=2BM=6.故选:B.9.(3分)如图,O是坐标原点,菱形ABOC的顶点B在x轴的负半轴上,顶点C的坐标为(3,4),则顶点A的坐标为()A.(﹣4,2) B.(,4) C.(﹣2,4) D.(﹣4,)【答案】C【解答】解:过C作CN⊥x轴于N,过A作AM⊥x轴于M,∵点C的坐标为(3,4),∴ON=3,CN=4,∴OC5,∵四边形ABOC是菱形,∴AC=OC=5,AC∥BO,∴四边形AMNC是矩形,∴MN=AC=5.∴OM=MN﹣ON=2∴点A的坐标为(﹣2,4).故选:C.10.(3分)如图1,矩形ABCD中,BD为其对角线,一动点P从D出发,沿着D→B→C的路径行进,过点P作PQ⊥CD,垂足为Q.设点P的运动路程为x,PQ﹣DQ为y,y与x的函数图象如图2,则AD的长为()A. B. C. D.【答案】B【解答】解:由图象得:CD=2,当BD+BP=4时,PQ=CD=2,设AD﹣CD=a,则BD=4﹣a,在Rt△BCD中,BD2﹣BC2=CD2,即:(4﹣a)2﹣(a+2)2=22,解得:a,∴AD=a+2,故选:B.二、填空题:本大题共6小题,每小题3分,共18分.11.(3分)因式分解:x2(x)(x).【答案】见试题解答内容【解答】解:原式=(x)(x),故答案为:(x)(x)12.(3分)“香渡栏干屈曲,红妆映、薄绮疏棂.”图1窗棂的外边框为正六边形(如图2),则该正六边形的每个内角为120°.【答案】120°.【解答】解:∵正六边形的内角和为:(6﹣2)×180°=720°,∴该正六边形的每个内角为:720÷6=120°,故答案为:120°.13.(3分)若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为﹣1.【答案】见试题解答内容【解答】解:∵关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,∴Δ=b2﹣4ac=0,即:22﹣4(﹣m)=0,解得:m=﹣1,故选答案为﹣1.14.(3分)如图,在△ABC中,点A的坐标为(0,1),点B的坐标为(4,1),点C的坐标为(3,4),点D在第一象限(不与点C重合),且△ABD与△ABC全等,点D的坐标是(1,4).【答案】(1,4).【解答】解:∵点D在第一象限(不与点C重合),且△ABD与△ABC全等,∴△BAD≌△ABC,∴AD=BC,BD=AC,如图所示:由图可知:D(1,4);故答案为:(1,4).15.(3分)如图,对折边长为2的正方形纸片ABCD,OM为折痕,以点O为圆心,OM为半径作弧,分别交AD,BC于E,F两点,则的长度为(结果保留π).16.(3分)如图,等腰△ABC中,AB=AC=2,∠BAC=120°,将△ABC沿其底边中线AD向下平移,使A的对应点A′满足AA′AD,则平移前后两三角形重叠部分的面积是.【答案】.【解答】解:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°.又∵AD是△ABC的中线,∴AD⊥BC.在Rt△ABD中,sinB,∴AD,∴BD.∴AA′AD,∴A′D.令A′B′与BD的交点为M,A′C′与CD的交点为N,由平移可知,∠A′MD=∠B=30°,在Rt△A′DM中,tan∠A′MD,∴MD.∵A′M=A′N,∴MN=2MD,∴.故答案为:.三、解答题:本大题共6小题,共32分.解答时,应写出必要的文字说明、证明过程或演算步骤.17.(4分)计算:||﹣()﹣1+20250.【答案】0.【解答】解:原式=|﹣2|﹣3+1=2﹣3+1=2+1﹣3=0.18.(4分)化简:(a+1).【答案】.【解答】解:原式•••.19.(4分)解不等式组:.【答案】1≤x<2.【解答】解:解不等式①,得x≥1,解不等式②,得x<2,故原不等式组的解集为:1≤x<2.20.(6分)物理变化和化学变化的区别在于是否有新物质的生成.某学习小组在延时课上制作了A,B,C,D四张卡片,四张卡片除图片内容不同外,其他没有区别,放置于暗箱中摇匀.(1)小临从四张卡片中随机抽取一张,抽中C卡片的概率是;(2)小夏从四张卡片中随机抽取两张,用列表法或画树状图法求小夏抽取两张卡片内容均为化学变化的概率.【答案】(1).(2).【解答】解:(1)由题意知,共有4种等可能的结果,其中抽中C卡片的结果有1种,∴抽中C卡片的概率是.故答案为:.(2)四张卡片内容中是化学变化的有:A,D,画树状图如下:共有12种等可能的结果,其中小夏抽取两张卡片内容均为化学变化的结果有:AD,DA,共2种,∴小夏抽取两张卡片内容均为化学变化的概率为.21.(6分)根据背景素材,探索解决问题.平面直角坐标系中画一个边长为2的正六边形ABCDEF背景素材六等分圆原理,也称为圆周六等分问题,是一个古老而经典的几何问题,旨在解决如何使用直尺和圆规将一个圆分成六等份的问题.这个问题由欧几里得在其名著《几何原本》中详细阐述.已知条件点C与坐标原点O重合,点D在x轴的正半轴上且坐标为(2,0).操作步骤①分别以点C,D为圆心,CD长为半径作弧,两弧交于点P;②以点P为圆心,PC长为半径作圆;③以CD的长为半径,在⊙P上顺次截取;④顺次连接DE,EF,FA,AB,BC.得到正六边形ABCDEF.问题解决任务一根据以上信息,请你用不带刻度的直尺和圆规,在图中完成这道作图题(保留作图痕迹,不写作法)任务二将正六边形ABCDEF绕点D顺时针旋转60°,直接写出此时点E所在位置的坐标:(4,0).【答案】任务一:见解析;任务二:(4,0).【解答】解:任务一:图形如图所示:任务二:将正六边形ABCDEF绕点D顺时针旋转60°,直接写出此时点E所在位置的坐标(4,0).22.(8分)乾元塔(图1)位于临夏州临夏市的北山公园内,共九级,为砼框架式结构,造型独特别致,远可眺太子山露骨风月,近可收临夏市城建全貌,巍巍峨峨,傲立苍穹.某校数学兴趣小组在学习了“解直角三角形”之后,开展了测量乾元塔高度AB的实践活动.A为乾元塔的顶端,AB⊥BC,点C,D在点B的正东方向,在C点用高度为1.6米的测角仪(即CE=1.6米)测得A点仰角为37°,向西平移14.5米至点D,测得A点仰角为45°,请根据测量数据,求乾元塔的高度AB.(结果保留整数,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】乾元塔的高度AB约为46m.【解答】解:过E作EF⊥AB于F,设FG=xm,在Rt△AEF中,∵∠AEF=37°,∴tan37°,∴AF=EF•tan37°=0.75(x+16.5)=(0.75x+10.875)m,在Rt△AGF中,∵∠AGF=45°,∴,∴AF=GF=xm,∴0.75x+10.875=x,∴x≈44,∴AB=AF+BF=44+1.6≈46(m)答:乾元塔的高度AB约为46m.四、解答题:本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.23.(7分)环球网消息称:近年来的电动自行车火灾事故80%都是充电时发生的,超过一半的电动自行车火灾发生在夜间充电的过程中.为了规避风险,某校政教处对学生进行规范充电培训活动,并对培训效果按10分制进行检测评分.为了解这次培训的效果,现从各年级随机抽取男、女生各10名的检测成绩作为样本进行整理,并绘制成如下不完整的统计图表:抽取的10名女生检测成绩统计表成绩/分678910人数12m3n注:10名女生检测成绩的中位数为8.5分.请根据以上信息,完成下列问题:(1)样本中男生检测成绩为10分的学生数是2,众数为8分;(2)女生检测成绩表中的m=2,n=2;(3)已知该校有男生545人,女生360人,若认定检测成绩不低于9分为“优秀”,估计全校检测成绩达到“优秀”的人数.【答案】(1)2,8;(2)2,2;(3)398人.【解答】解:(1)样本中男生检测成绩为10分的学生数是10×(1﹣10%﹣50%﹣20%)=2(人),∵出现次数最多的为8分,∴七年级活动成绩的众数为8分;故答案为:2,8;(2)将女生检测成绩绩从小到大排列后,它的中位数应是第5个和第6个数据的平均数,∵女生检测成绩的中位数为8.5分,∴第5个和第6个数据的和为8.5×2=17=8+9,∴第5个和第6个数据分别为8分,9分,∵成绩为6分和7分的人数为1+2=3(人),∴成绩为8分的人数为5﹣3=2(人),成绩为10分的人数为5﹣3=2(人),即m=2,n=2;故答案为:2,2;(3)545×(20%+20%)+360218+180=398(人),答:估计全校检测成绩达到“优秀”的人数为398人.24.(7分)如图,直线l与⊙O相切于点D,AB为⊙O的直径,过点A作AE⊥l于点E,延长AB交直线l于点C.(1)求证:AD平分∠CAE;(2)如果BC=1,DC=3,求⊙O的半径.【答案】(1)见解答;(2)4.【解答】(1)证明:连接OD,如图,∵直线l与⊙O相切于点D,∴OD⊥CE,∵AE⊥CE,∴OD∥AE,∴∠ODA=∠EAD,∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠EAD,∴AD平分∠CAE;(2)解:设⊙O的半径为r,则OB=OD=r,在Rt△OCD中,∵OD=r,CD=3,OC=r+1,∴r2+32=(r+1)2,解得r=4,即⊙O的半径为4.25.(8分)如图,直线y=kx与双曲线y交于A,B两点,已知A点坐标为(a,2).(1)求a,k的值;(2)将直线y=kx向上平移m(m>0)个单位长度,与双曲线y在第二象限的图象交于点C,与x轴交于点E,与y轴交于点P,若PE=PC,求m的值.【答案】(1)a=﹣2,k=﹣1;(2)m.【解答】解:(1)∵点A在反比例函数图象上,所以2,解得a=﹣2,将A(﹣2,2)代入y=kx,∴k=﹣1;(2)∵如图,过点C作CF⊥y轴于点F,∴CF∥OE,∴∠FCP=∠OEP,∠CFP=∠EOP,∵PE=PC,∴△CFP≌△EOP(AAS),∴CF=OE,OP=PF,∵直线y=﹣x向上平移m个单位长度得到y=﹣x+m,令x=0,得y=m,令y=0,得x=m,∴E(m,0),P(0,m),∴CF=OE=m,OP=PF=m,∴C(﹣m,2m),∵双曲线y过点C,∴﹣m•2m=﹣4,解得m或(舍去),∴m.26.(8分)如图1,在矩形ABCD中,点E为AD边上不与端点重合的一动点,点F是对角线BD上一点,连接BE,AF交于点O,且∠ABE=∠DAF.【模型建立】(1)求证:AF⊥BE;【模型应用】(2)若AB=2,AD=3,DFBF,求DE的长;【模型迁移】(3)如图2,若矩形ABCD是正方形,DFBF,求的值.27.(10分)在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,作直线BC.(1)求抛物线的解析式.(2)如图1,点P是线段BC上方的抛物线上一动点,过点P作PQ⊥BC,垂足为Q,请问线段PQ是否存在最大值?若存在,请求出最大值及此时点P的坐标;若不存在请说明理由.(3)如图2,点M是直线BC上一动点,过点M作线段MN∥OC(点N在直线BC下方),已知MN=2,若线段MN与抛物线有交点,请直接写出点M的横坐标xM的取值范围.【答案】(1)y=﹣x2+2x+3;(2)PQ的最大值,此时P(,);(3)xM≤0或3≤xM.【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴,解得,∴抛物线的解析式为y=﹣x2+2x+3;(2)过点P作PN⊥AB于点N,交BC于点M.∵B(3,0),C(0,3),∴直线BC的解析式为y=﹣x+3,∵OB=OC,∠BOC=90°,∴∠CBO=45°,∵∠MNB=90°,∴∠PMQ=∠NMB=45°,∵PQ⊥BC,∴△PQM是等腰直角三角形,∴PMPQ,∴PM的值最大时,PQ的值最大,设P(m,﹣m2﹣2m+3),则M(m,﹣m+3),∴PM=﹣m2﹣2m+3﹣(﹣m+3)=﹣m2+3m,∵﹣1<0,∴当m时,PM的值最大,PM的最大值,∴PQ的最大值PM,此时P(,);(3)设M(a,﹣a+3),则N(a,﹣a+1),当点N在抛物线上时,﹣a+1=﹣a2+2a+3,∴a2﹣3a﹣2=0,解得a1,a2.∵线段MN与抛物线有交点,∴满足条件的点M的横坐标的取值范围为:xM≤0或3≤xM.2024年甘肃省中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)下列各数中,比﹣2小的数是()A.﹣1 B.﹣4 C.4 D.12.(3分)如图所示,该几何体的主视图是()A. B. C. D.3.(3分)若∠A=55°,则∠A的补角为()A.35° B.45° C.115° D.125°4.(3分)计算:()A.2 B.2a﹣b C. D.5.(3分)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ABD=60°,AB=2,则AC的长为()A.6 B.5 C.4 D.36.(3分)如图,点A,B,C在⊙O上,AC⊥OB,垂足为D,若∠A=35°,则∠C的度数是()A.20° B.25° C.30° D.35°7.(3分)如图1,“燕几”即宴几,是世界上最早的一套组合桌,由北宋进士黄伯思设计.全套“燕几”一共有七张桌子,包括两张长桌、两张中桌和三张小桌,每张桌面的宽都相等.七张桌面分开可组合成不同的图形.如图2给出了《燕几图》中名称为“回文”的桌面拼合方式,若设每张桌面的宽为x尺,长桌的长为y尺,则y与x的关系可以表示为()A.y=3x B.y=4x C.y=3x+1 D.y=4x+18.(3分)近年来,我国重视农村电子商务的发展.下面的统计图反映了2016﹣2023年中国农村网络零售额情况,根据统计图提供的信息,下列结论错误的是()A.2023年中国农村网络零售额最高 B.2016年中国农村网络零售额最低 C.2016﹣2023年,中国农村网络零售额持续增加 D.从2020年开始,中国农村网络零售额突破20000亿元9.(3分)敦煌文书是华夏民族引以为傲的艺术瑰宝,其中敦煌《算经》中出现的《田积表》部分如图1所示,它以表格形式将矩形土地的面积直观展示,可迅速准确地查出边长10步到60步的矩形田地面积,极大地提高了农田面积的测量效率.如图2是复原的部分《田积表》,表中对田地的长和宽都用步来表示,A区域表示的是长15步,宽16步的田地面积为一亩,用有序数对记为(15,16),那么有序数对记为(12,17)对应的田地面积为()A.一亩八十步 B.一亩二十步 C.半亩七十八步 D.半亩八十四步10.(3分)如图1,动点P从菱形ABCD的点A出发,沿边AB→BC匀速运动,运动到点C时停止.设点P的运动路程为x,PO的长为y,y与x的函数图象如图2所示,当点P运动到BC中点时,PO的长为()A.2 B.3 C. D.二、填空题:本大题共6小题,每小题4分,共24分.11.(4分)因式分解:2x2﹣8=.12.(4分)已知一次函数y=﹣2x+4,当自变量x>2时,函数y的值可以是(写出一个合理的值即可).13.(4分)定义一种新运算*,规定运算法则为:m*n=mn﹣mn(m,n均为整数,且m≠0).例:2*3=23﹣2×3=2,则(﹣2)*2=.14.(4分)围棋起源于中国,古代称为“弈”.如图是两位同学的部分对弈图,轮到白方落子,观察棋盘,白方如果落子于点的位置,则所得的对弈图是轴对称图形.(填写A,B,C,D中的一处即可,A,B,C,D位于棋盘的格点上)15.(4分)如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y(单位:m)与距离停车棚支柱AO的水平距离x(单位:m)近似满足函数关系y=﹣0.02x2+0.3x+1.6的图象,点B(6,2.68)在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长CD=4m,高DE=1.8m的矩形,则可判定货车完全停到车棚内(填“能”或“不能”).16.(4分)甘肃临夏砖雕是一种历史悠久的古建筑装饰艺术,是第一批国家级非物质文化遗产.如图1是一块扇面形的临夏砖雕作品,它的部分设计图如图2,其中扇形OBC和扇形OAD有相同的圆心O,且圆心角∠O=100°,若OA=120cm,OB=60cm,则阴影部分的面积是cm2.(结果用π表示)三、解答题:本大题共6小题,共46分.解答时,应写出必要的文字说明、证明过程或演算步骤.17.(6分)计算:.18.(6分)解不等式组:.19.(6分)先化简,再求值:[(2a+b)2﹣(2a+b)(2a﹣b)]÷2b,其中a=2,b=﹣1.20.(8分)马家窑文化以发达的彩陶著称于世,其陶质坚固,器表细腻,红、黑、白彩共用,彩绘线条流畅细致,图案繁缛多变,形成了绚丽典雅的艺术风格,创造了一大批令人惊叹的彩陶艺术精品,体现了古代劳动人民的智慧.如图1的彩陶纹样呈现的是三等分圆周,古人用等边三角形三点定位的方法确定圆周的三等分点,这种方法和下面三等分圆周的方法相通.如图2,已知⊙O和圆上一点M.作法如下:①以点M为圆心,OM长为半径,作弧交⊙O于A,B两点;②延长MO交⊙O于点C;即点A,B,C将⊙O的圆周三等分.(1)请你依据以上步骤,用不带刻度的直尺和圆规在图2中将⊙O的圆周三等分(保留作图痕迹,不写作法);(2)根据(1)画出的图形,连接AB,AC,BC,若⊙O的半径为2cm,则△ABC的周长为cm.21.(10分)在一只不透明的布袋中,装有质地、大小均相同的四个小球,小球上分别标有数字1,2,3,4.甲乙两人玩摸球游戏,规则为:两人同时从袋中随机各摸出1个小球,若两球上的数字之和为奇数,则甲胜;若两球上的数字之和为偶数,则乙胜.(1)请用画树状图或列表的方法,求甲获胜的概率.(2)这个游戏规则对甲乙双方公平吗?请说明理由.22.(10分)习近平总书记于2021年指出,中国将力争2030年前实现碳达峰、2060年前实现碳中和.甘肃省风能资源丰富,风力发电发展迅速.某学习小组成员查阅资料得知,在风力发电机组中,“风电塔筒”非常重要,它的高度是一个重要的设计参数.于是小组成员开展了“测量风电塔筒高度”的实践活动.如图,已知一风电塔筒AH垂直于地面,测角仪CD,EF在AH两侧,CD=EF=1.6m,点C与点E相距182m(点C,H,E在同一条直线上),在D处测得筒尖顶点A的仰角为45°,在F处测得筒尖顶点A的仰角为53°.求风电塔简AH的高度.(参考数据:sin53°,cos53°,tan53°.)四、解答题:本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.23.(8分)在阳光中学运动会跳高比赛中,每位选手要进行五轮比赛,张老师对参加比赛的甲、乙、丙三位选手的得分(单位:分,满分10分)进行了数据的收集、整理和分析,信息如下:信息一:甲、丙两位选手的得分折线图;信息二:选手乙五轮比赛部分成绩:其中三个得分分别是9.0,8.9,8.3;信息三:甲、乙、丙三位选手五轮比赛得分的平均数、中位数数据如下:选手统计量甲乙丙平均数m9.18.9中位数9.29.0n根据以上信息,回答下列问题:(1)写出表中m,n的值:m=,n=;(2)从甲、丙两位选手的得分折线图中可知,选手发挥的稳定性更好(填“甲”或“丙”);(3)该校现准备推荐一位选手参加市级比赛,你认为应该推荐哪位选手,请说明理由.24.(10分)如图,在平面直角坐标系中,将函数y=ax的图象向上平移3个单位长度,得到一次函数y=ax+b的图象,与反比例函数y(x>0)的图象交于点A(2,4).过点B(0,2)作x轴的平行线分别交y=ax+b与y(x>0)的图象于C,D两点.(1)求一次函数y=ax+b和反比例函数y的表达式;(2)连接AD,求△ACD的面积.25.(10分)如图,AB是⊙O的直径,,点E在AD的延长线上,且∠ADC=∠AEB.(1)求证:BE是⊙O的切线;(2)当⊙O的半径为2,BC=3时,求tan∠AEB的值.26.(10分)【模型建立】(1)如图1,已知△ABE和△BCD,AB⊥BC,AB=BC,CD⊥BD,AE⊥BD.用等式写出线段AE,DE,CD的数量关系,并说明理由.【模型应用】(2)如图2,在正方形ABCD中,点E,F分别在对角线BD和边CD上,AE⊥EF,AE=EF.用等式写出线段BE,AD,DF的数量关系,并说明理由.【模型迁移】(3)如图3,在正方形ABCD中,点E在对角线BD上,点F在边CD的延长线上,AE⊥EF,AE=EF.用等式写出线段BE,AD,DF的数量关系,并说明理由.27.(12分)如图1,抛物线y=a(x﹣h)2+k交x轴于O,A(4,0)两点,顶点为B(2,2),点C为OB的中点.(1)求抛物线y=a(x﹣h)2+k的表达式;(2)过点C作CH⊥OA,垂足为H,交抛物线于点E.求线段CE的长.(3)点D为线段OA上一动点(O点除外),在OC右侧作平行四边形OCFD.①如图2,当点F落在抛物线上时,求点F的坐标;②如图3,连接BD,BF,求BD+BF的最小值.
2024年甘肃省中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)下列各数中,比﹣2小的数是()A.﹣1 B.﹣4 C.4 D.1【答案】B【解答】解:根据两个负数,绝对值大的反而小,可得比﹣2小的数是﹣4,故选:B.2.(3分)如图所示,该几何体的主视图是()A. B. C. D.【答案】C【解答】解:该几何体的主视图是.故选:C.3.(3分)若∠A=55°,则∠A的补角为()A.35° B.45° C.115° D.125°【答案】D【解答】解:若∠A=55°,则∠A的补角为180°﹣55°=125°,故选:D.4.(3分)计算:()A.2 B.2a﹣b C. D.【答案】A【解答】解:原式=2.故选:A.5.(3分)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ABD=60°,AB=2,则AC的长为()A.6 B.5 C.4 D.3【答案】C【解答】解:∵四边形ABCD为矩形,对角线AC,BD相交于点O,AB=2,∴OA=OB=OC=OD,∵∠ABD=60°,∴△OAB为等边三角形,∴OA=OB=AB=2,∴OC=OA=2,∴AC=OA+OC=4,故选:C.6.(3分)如图,点A,B,C在⊙O上,AC⊥OB,垂足为D,若∠A=35°,则∠C的度数是()A.20° B.25° C.30° D.35°【答案】A【解答】解:∵∠A=35°,∴∠O=2∠A=70°,∵AC⊥OB,∴∠CDO=90°,∴∠C=90°﹣∠O=90°﹣70°=20°.故选:A.7.(3分)如图1,“燕几”即宴几,是世界上最早的一套组合桌,由北宋进士黄伯思设计.全套“燕几”一共有七张桌子,包括两张长桌、两张中桌和三张小桌,每张桌面的宽都相等.七张桌面分开可组合成不同的图形.如图2给出了《燕几图》中名称为“回文”的桌面拼合方式,若设每张桌面的宽为x尺,长桌的长为y尺,则y与x的关系可以表示为()A.y=3x B.y=4x C.y=3x+1 D.y=4x+1【答案】B【解答】解:由图可知,“回文”的桌面的总面积为4x(x+y),其中每张长桌的桌面面积为xy,每张中桌的桌面面积为3x2,每张小桌的桌面面积为2x2.根据题意,得2xy+2×3x2+3×2x2=4x(x+y),解得y=4x.故选:B.8.(3分)近年来,我国重视农村电子商务的发展.下面的统计图反映了2016﹣2023年中国农村网络零售额情况,根据统计图提供的信息,下列结论错误的是()A.2023年中国农村网络零售额最高 B.2016年中国农村网络零售额最低 C.2016﹣2023年,中国农村网络零售额持续增加 D.从2020年开始,中国农村网络零售额突破20000亿元【答案】D【解答】解:A、由统计图可知,2023年中国农村网络零售额为24900亿元,是2016﹣2023年中总额最高的;B、由统计图可知,2016年中国农村网络零售额为8945亿元,是2016﹣2023年中总额最低的;C、由统计图可知,2016﹣2023年中,中国农村网络零售额是持续增加的;D、由统计图可知,中国农村网络零售额从2021年开始突破了20000亿元,而非2020年;故选:D.9.(3分)敦煌文书是华夏民族引以为傲的艺术瑰宝,其中敦煌《算经》中出现的《田积表》部分如图1所示,它以表格形式将矩形土地的面积直观展示,可迅速准确地查出边长10步到60步的矩形田地面积,极大地提高了农田面积的测量效率.如图2是复原的部分《田积表》,表中对田地的长和宽都用步来表示,A区域表示的是长15步,宽16步的田地面积为一亩,用有序数对记为(15,16),那么有序数对记为(12,17)对应的田地面积为()A.一亩八十步 B.一亩二十步 C.半亩七十八步 D.半亩八十四步【答案】D【解答】解:根据(15,16)可得,横从上面从右向左看,纵从右边自下而上看,∴(12,17)对应的是半亩八十四步,故选:D.10.(3分)如图1,动点P从菱形ABCD的点A出发,沿边AB→BC匀速运动,运动到点C时停止.设点P的运动路程为x,PO的长为y,y与x的函数图象如图2所示,当点P运动到BC中点时,PO的长为()A.2 B.3 C. D.【答案】C【解答】解:结合图象,得到当x=0时,PO=AO=4,∴当点P运动到点B时,PO=BO=2,∵菱形ABCD,∴AC⊥BD,∴∠AOB=∠BOC=90°,∴,当点P运动到BC中点时,PO的长为,故选:C.二、填空题:本大题共6小题,每小题4分,共24分.11.(4分)因式分解:2x2﹣8=2(x+2)(x﹣2).【答案】见试题解答内容【解答】解:2x2﹣8=2(x+2)(x﹣2).12.(4分)已知一次函数y=﹣2x+4,当自变量x>2时,函数y的值可以是﹣2(答案不唯一)(写出一个合理的值即可).【答案】﹣2(答案不唯一).【解答】解:当x=3时,y=﹣2×3+4=﹣2;故答案为:﹣2(答案不唯一).13.(4分)定义一种新运算*,规定运算法则为:m*n=mn﹣mn(m,n均为整数,且m≠0).例:2*3=23﹣2×3=2,则(﹣2)*2=8.【答案】见试题解答内容【解答】解:∵m*n=mn﹣mn,∴(﹣2)*2=(﹣2)2﹣(﹣2)×2=4+4=8,故答案为:8.14.(4分)围棋起源于中国,古代称为“弈”.如图是两位同学的部分对弈图,轮到白方落子,观察棋盘,白方如果落子于点A(答案不唯一)的位置,则所得的对弈图是轴对称图形.(填写A,B,C,D中的一处即可,A,B,C,D位于棋盘的格点上)【答案】A(答案不唯一).【解答】解:白方如果落子于点A(答案不唯一)的位置,则所得的对弈图是轴对称图形.故答案为:A(答案不唯一).15.(4分)如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y(单位:m)与距离停车棚支柱AO的水平距离x(单位:m)近似满足函数关系y=﹣0.02x2+0.3x+1.6的图象,点B(6,2.68)在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长CD=4m,高DE=1.8m的矩形,则可判定货车能完全停到车棚内(填“能”或“不能”).【答案】能.【解答】解:∵CD=4m,B(6,2.68),∴6﹣4=2,在y=﹣0.02x2+0.3x+1.6中,当x=2时,y=﹣0.02×22+0.3×2+1.6=2.12,∵2.12>1.8,∴货车能完全停到车棚内,故答案为:能.16.(4分)甘肃临夏砖雕是一种历史悠久的古建筑装饰艺术,是第一批国家级非物质文化遗产.如图1是一块扇面形的临夏砖雕作品,它的部分设计图如图2,其中扇形OBC和扇形OAD有相同的圆心O,且圆心角∠O=100°,若OA=120cm,OB=60cm,则阴影部分的面积是3000πcm2.(结果用π表示)【答案】3000π.【解答】解:S阴影=S扇形AOD﹣S扇形BOC=3000π(cm2),故答案为:3000π.三、解答题:本大题共6小题,共46分.解答时,应写出必要的文字说明、证明过程或演算步骤.17.(6分)计算:.【答案】见试题解答内容【解答】解:原式=33=0.18.(6分)解不等式组:.【答案】见试题解答内容【解答】解:由2(x﹣2)<x+3,得:x<7,由2x,得:x,所以不等式组解集为x<7.19.(6分)先化简,再求值:[(2a+b)2﹣(2a+b)(2a﹣b)]÷2b,其中a=2,b=﹣1.【答案】2a+b,3.【解答】解:原式=[4a2+4ab+b2﹣(4a2﹣b2)]÷2b=(4a2+4ab+b2﹣4a2+b2)÷2b=(4ab+2b2)÷2b=2a+b,当a=2,b=﹣1时,原式=2×2﹣1=3.20.(8分)马家窑文化以发达的彩陶著称于世,其陶质坚固,器表细腻,红、黑、白彩共用,彩绘线条流畅细致,图案繁缛多变,形成了绚丽典雅的艺术风格,创造了一大批令人惊叹的彩陶艺术精品,体现了古代劳动人民的智慧.如图1的彩陶纹样呈现的是三等分圆周,古人用等边三角形三点定位的方法确定圆周的三等分点,这种方法和下面三等分圆周的方法相通.如图2,已知⊙O和圆上一点M.作法如下:①以点M为圆心,OM长为半径,作弧交⊙O于A,B两点;②延长MO交⊙O于点C;即点A,B,C将⊙O的圆周三等分.(1)请你依据以上步骤,用不带刻度的直尺和圆规在图2中将⊙O的圆周三等分(保留作图痕迹,不写作法);(2)根据(1)画出的图形,连接AB,AC,BC,若⊙O的半径为2cm,则△ABC的周长为6cm.【答案】(1)作图见解析;(2)6.【解答】解:(1)如图,点A,B,C即为所求.(2)设CM交AB于点E.∵,∴AB=CB=AC,∠AOB=120°,∵,∴∠AOM=∠BOM=60°,∵OA=OB,∴OE⊥AB,AE=EB=AO•sin60°=2(cm),∴AB=2(cm),∴△ABC的周长为6cm.故答案为:6.21.(10分)在一只不透明的布袋中,装有质地、大小均相同的四个小球,小球上分别标有数字1,2,3,4.甲乙两人玩摸球游戏,规则为:两人同时从袋中随机各摸出1个小球,若两球上的数字之和为奇数,则甲胜;若两球上的数字之和为偶数,则乙胜.(1)请用画树状图或列表的方法,求甲获胜的概率.(2)这个游戏规则对甲乙双方公平吗?请说明理由.【答案】(1);(2)游戏不公平.【解答】解:(1)画树状图得:共有12种等可能的结果,其中甲获胜的结果有8种,∴甲获胜的概率为;(2)不公平.由树状图可知,乙获胜的结果有4种,∴乙获胜的概率为,∵,∴游戏不公平.22.(10分)习近平总书记于2021年指出,中国将力争2030年前实现碳达峰、2060年前实现碳中和.甘肃省风能资源丰富,风力发电发展迅速.某学习小组成员查阅资料得知,在风力发电机组中,“风电塔筒”非常重要,它的高度是一个重要的设计参数.于是小组成员开展了“测量风电塔筒高度”的实践活动.如图,已知一风电塔筒AH垂直于地面,测角仪CD,EF在AH两侧,CD=EF=1.6m,点C与点E相距182m(点C,H,E在同一条直线上),在D处测得筒尖顶点A的仰角为45°,在F处测得筒尖顶点A的仰角为53°.求风电塔简AH的高度.(参考数据:sin53°,cos53°,tan53°.)【答案】风电塔简AH的高度约为105.6m.【解答】解:连接DF交AH于点G,由题意得:CD=EF=GH=1.6m,DF=CE=182m,DF⊥AH,设DG=xm,∴FG=DF﹣DG=(182﹣x)m,在Rt△ADG中,∠ADG=45°,∴AG=DG•tan45°=x(m),在Rt△AFG中,∠AFG=53°,∴AG=FG•tan53°(182﹣x)m,∴x(182﹣x),解得:x=104,∴AG=104m,∴AH=AG+GH=104+1.6=105.6(m),∴风电塔简AH的高度约为105.6m.四、解答题:本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.23.(8分)在阳光中学运动会跳高比赛中,每位选手要进行五轮比赛,张老师对参加比赛的甲、乙、丙三位选手的得分(单位:分,满分10分)进行了数据的收集、整理和分析,信息如下:信息一:甲、丙两位选手的得分折线图;信息二:选手乙五轮比赛部分成绩:其中三个得分分别是9.0,8.9,8.3;信息三:甲、乙、丙三位选手五轮比赛得分的平均数、中位数数据如下:选手统计量甲乙丙平均数m9.18.9中位数9.29.0n根据以上信息,回答下列问题:(1)写出表中m,n的值:m=8.98,n=9.2;(2)从甲、丙两位选手的得分折线图中可知,选手丙发挥的稳定性更好(填“甲”或“丙”);(3)该校现准备推荐一位选手参加市级比赛,你认为应该推荐哪位选手,请说明理由.【答案】(1)9.1,9.1;(2)甲;(3)甲,理由见解答.【解答】解:(1)甲的平均数是:m(9.2+8.8+9.3+8.4+9.5)=9.1,把这些数从小到大排列为:8.3,8.4,9.1,9.3,9.4,中位数n=9.1;故答案为:9.1,9.1;(2)由题意可知,甲五轮比赛成绩的波动较小,丙的波动较大,所以选手甲发挥的稳定性更好.故答案为:甲;(3)应该推荐甲,理由如下:甲的中位数和平均数都比乙的大,且甲的成绩稳定性比乙好,所以应该推荐甲选手.24.(10分)如图,在平面直角坐标系中,将函数y=ax的图象向上平移3个单位长度,得到一次函数y=ax+b的图象,与反比例函数y(x>0)的图象交于点A(2,4).过点B(0,2)作x轴的平行线分别交y=ax+b与y(x>0)的图象于C,D两点.(1)求一次函数y=ax+b和反比例函数y的表达式;(2)连接AD,求△ACD的面积.【答案】(1)一次函数解析式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB23-T2945-2021-相变沥青混合料路面设计与施工技术规范-黑龙江省
- DB23-T2878-2021-过伐林红松大径材单株抚育技术-黑龙江省
- DB23-T2842-2021-政务信息资源数据交换规范-黑龙江省
- 基层医院采购管理制度
- 工具集中采购管理制度
- 工程公司工地管理制度
- 商场收银收款管理制度
- 创业培训教师管理制度
- 创业期间公司管理制度
- 外贸汽车采购方案(3篇)
- 医疗机构制剂品种保密申报
- 【试卷】-《新能源汽车整车控制系统检修》课程考试试卷(闭卷)A卷
- 整本书阅读教学设计《田螺姑娘》
- 高速公路服务区发展调研报告
- 重大隐患判定标准培训课件
- 桥梁健康监测方案
- 华为公司知识管理
- 羽毛球培训项目实施方案
- 外观件批准报告AAR
- 福建省2022年6月普通高中学业水平合格性考试生物试卷(含答案)
- 幼儿园中班创意美术《甜甜圈》课件
评论
0/150
提交评论