沪科版九年级上册数学期中考试试题及答案解析_第1页
沪科版九年级上册数学期中考试试题及答案解析_第2页
沪科版九年级上册数学期中考试试题及答案解析_第3页
沪科版九年级上册数学期中考试试题及答案解析_第4页
沪科版九年级上册数学期中考试试题及答案解析_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

沪科版九年级上册数学期中考试试卷一、选择题。(每小题只有一个正确答案)1.将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为()A.y=x2﹣1B.y=x2+1C.y=(x﹣1)2D.y=(x+1)22.如果反比例函数y=的图象经过点(﹣,3),则k的值是()A.﹣ B.﹣6 C. D.3.已知3x=5y(y≠0),则下列比例式成立的是()A.= B.= C.= D.=4.若,相似比为1:2,则与的面积的比为()A.1:2 B.2:1 C.1:4 D.4:15.二次函数中,若,则它的图象必经过点()A.(-1,-1) B.(1,1) C.(1,-1) D.(-1,1)6.如图,△ABC中,AD是中线,BC=16,∠B=∠DAC,则线段AC的长是()A.8 B. C.12 D.7.如图,平面直角坐标系中,点A是x轴上任意一点,BC平行于x轴,分别交y=(x>0)、y=(x<0)的图象于B、C两点,若△ABC的面积为2,则k值为()A.﹣1 B.1 C. D.8.已知二次函数y=a(x﹣m)2﹣n的图象如图所示,则一次函数y=mx+a与反比例函数y=﹣在同一坐标系内的图象可能是()A.B.C.D.9.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,()A.若2AD>AB,则3S1>2S2 B.若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2 D.若2AD<AB,则3S1<2S210.如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动,设点B的坐标为(0,b),则b的取值范围是()A.≤b≤1 B.≤b≤1 C.≤b≤ D.≤b≤1二、填空题11.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么PB的长度为__________cm.12.已知点A(0,y1)、B(1,y2)、C(3,y3)在抛物线y=ax2﹣2ax+1(a<0)上,则y1、y2、y3的大小关系是_____(用“<”联结).13.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.14.二次函数y=x2﹣x+a(0<a<),若当x=t时,y<0,则当x=t﹣1时,函数值y的取值范围为_____.三、解答题15.已知抛物线过点C(5,4).(1)求的值;(2)求该抛物线顶点的坐标.16.如图,已知在△ABC中,DE∥BC,EF∥AB,AE=2CE,AB=6,BC=9.求:四边形BDEF的周长.17.如图,已知O是坐标原点,B,C两点的坐标分别为(3,﹣1),(2,1).(1)以O点为位似中心在y轴的左侧将△OBC放大到两倍,画出图形;(2)分别写出B,C两点的对应点B′,C′的坐标;(3)求△OB′C′的面积.18.某施工地在道路拓宽施工时,遇到这样一个问题,马路旁边原有一个面积为100平方米,周长为90米的三角形绿化地,由于马路拓宽绿地被占去了一部分△ADE,变成了四边形BCED且DE∥BC,原绿化地一边AB的长由原来的30米缩短成BD为18米.求被占去的部分面积有多大?它的周长是多少?19.如图,一次函数y=kx+b(k≠0)和反比例函数y=(m≠0)交于点A(4,1)与点B(﹣1,n).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值的x的取值范围.20.有一个二次函数满足以下条件:①函数图象与x轴的交点坐标分别为A(1,0),B(x2,y2)(点B在点A的右侧);②对称轴是x=3;③该函数有最小值是﹣2.(1)请根据以上信息求出二次函数表达式;(2)将该函数图象中x>x2部分的图象向下翻折与原图象未翻折的部分组成图象“G”,试结合图象分析:平行于x轴的直线y=m与图象“G”的交点的个数情况.21.如图,已知,在锐角中,于点E,点D在边AC上,联结BD交CE于点F,且.求证:;联结AF,求证:.22.我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:,每件产品的利润z(元)与月份x(月)的关系如下表:x123456789101112z191817161514131211101010(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?23.我们知道,三角形三个内角平分线的交点叫做三角形的内心,已知点I为△ABC的内心.(1)如图1,连接AI并延长交BC于点D,若AB=AC=3,BC=2,求ID的长;(2)如图2,过点I作直线交AB于点M,交AC于点N.①若MN⊥AI,求证:MI2=BM•CN;②如图3,AI交BC于点D,若∠BAC=60°,AI=4,求的值.参考答案与解析1.A【解析】二次函数图象与平移变换.据平移变化的规律,左右平移只改变横坐标,左减右加.上下平移只改变纵坐标,下减上加.因此,将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为:y=x2﹣1.故选A.2.D【分析】直接利用反比例函数图像上点的坐标特点得出答案.【详解】解:∵反比例函数y=的图像经过点(﹣,3),∴k=xy=﹣.故选:D.【点睛】此题主要考查了反比例函数图像上点的坐标特征,正确代入已知点是解题关键.3.B【分析】直接利用比例的性质得出x,y之间关系进而得出答案.【详解】A.由得,故本选项错误;B.由得,故本选项正确;C.由得,故本选项错误;D.由得,故本选项错误.故选B.【点睛】根据两内项之积等于两外项之积对各选项分析判断即可得解.4.C【详解】试题分析:直接根据相似三角形面积比等于相似比平方的性质.得出结论:∵,相似比为1:2,∴与的面积的比为1:4.故选C.考点:相似三角形的性质.5.B【解析】试题解析:当时,故它的图象过点故选B.6.B【分析】通过证明△DAC∽△ABC,可得,即可求AC的长.【详解】解:∵AD是中线,BC=16,∴BD=DC=8,∵∠B=∠DAC,∠C=∠C,∴△DAC∽△ABC∴∴AC2=16×8,∴AC=8,故选:B.【点睛】本题考查了相似三角形的判定和性质,证明△DAC∽△ABC是本题的关键.7.A【详解】【分析】连接OC、OB,如图,由于BC∥x轴,根据三角形面积公式得到S△ACB=S△OCB,再利用反比例函数系数k的几何意义得到×|3|+•|k|=2,然后解关于k的绝对值方程可得到满足条件的k的值.【详解】连接OC、OB,如图,∵BC∥x轴,∴S△ACB=S△OCB,而S△OCB=×|3|+•|k|,∴×|3|+•|k|=2,而k<0,∴k=﹣1,故选A.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.8.B【分析】根据二次函数图象判断出a>0,m<0,n<0,然后求出mn>0,再根据一次函数与反比例函数图象的性质判断即可.【详解】解:∵抛物线开口向上,∴a>0,由图可知,m<0,n<0,∴mn>0,∴一次函数y=mx+a的图像过第一、二、四象限,反比例函数y=﹣分布在第二、四象限.故选:B.【点睛】本题考查了二次函数图像,一次函数图像,反比例函数图像,观察二次函数图像判断出m、n、a的取值是解题的关键.9.D【解析】【分析】根据题意判定△ADE∽△ABC,由相似三角形的面积之比等于相似比的平方解答.【详解】∵如图,在△ABC中,DE∥BC,∴△ADE∽△ABC,∴,∴若2AD>AB,即时,,此时3S1>S2+S△BDE,而S2+S△BDE<2S2.但是不能确定3S1与2S2的大小,故选项A不符合题意,选项B不符合题意.若2AD<AB,即时,,此时3S1<S2+S△BDE<2S2,故选项C不符合题意,选项D符合题意.故选D.【点睛】考查了相似三角形的判定与性质,三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.10.B【分析】延长NM交y轴于P点,则MN⊥y轴.连接CN.证明△PAB∽△NCA,得出,设PA=x,则NA=PN﹣PA=3﹣x,设PB=y,代入整理得到y=3x﹣x2=﹣(x﹣)2+,根据二次函数的性质以及≤x≤3,求出y的最大与最小值,进而求出b的取值范围.【详解】解:如图,延长NM交y轴于P点,则MN⊥y轴.连接CN.在△PAB与△NCA中,,∴△PAB∽△NCA,∴,设PA=x,则NA=PN﹣PA=3﹣x,设PB=y,∴,∴y=3x﹣x2=﹣(x﹣)2+,∵﹣1<0,≤x≤3,∴x=时,y有最大值,此时b=1﹣=﹣,x=3时,y有最小值0,此时b=1,∴b的取值范围是﹣≤b≤1.故选:B.【点睛】本题考查了相似三角形的判定与性质,二次函数的性质,得出y与x之间的函数解析式是解题的关键.11.(15﹣5)【分析】先利用黄金分割的定义计算出AP,然后计算AB-AP即得到PB的长.【详解】∵P为AB的黄金分割点(AP>PB),∴AP=AB=×10=5﹣5,∴PB=AB﹣PA=10﹣(5﹣5)=(15﹣5)cm.故答案为(15﹣5).【点睛】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB.12.y3<y1<y2.【分析】求出抛物线的对称轴为直线x=1,然后根据二次函数的增减性解答.【详解】解:抛物线的对称轴为直线x=﹣=1,∵a<0,∴抛物线开口方向向下,∵A(0,y1)、B(1,y2)、C(3,y3),∴y3<y1<y2.故答案为:y3<y1<y2.【点睛】本题考查了二次函数图像上点的坐标特征,主要利用了二次函数的增减性,求出抛物线的对称轴是解题的关键.13..【分析】如图,根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论.【详解】如图,∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴=,∴=,∴x=,故答案为.【点睛】本题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.14.0<y<.【分析】先由a的范围,得△>0,进而得抛物线的对称轴及当x=0或1时,y的范围,从而得当y<0时,t的范围及t﹣1的范围,再由t﹣1的范围两端的临界值,得对应的函数值,从而得答案.【详解】解:∵0<a<,∴△=1﹣4a>0,∵抛物线的对称轴为x=,x=0或1时,y=a>0,∴当y<0时,0<t<1,∴﹣1<t﹣1<0,∴当x=﹣1时,y=1+1+a=a+2,当x=0时,y=0﹣0+a=a,∴当x=t﹣1时,函数值y的取值范围为a<y<a+2,∵0<a<,∴0<y<,故答案为:0<y<.【点睛】本题考查了抛物线与x轴的交点的性质、抛物线的交点个数与对应的一元二次方程的判别式的关系、二次函数的函数值在对称轴同侧的变化情况等知识点,具有一定的综合性.15.(1)1;(2)(,).【解析】试题分析:(1)根据二次函数图象上点的坐标特征,把C点坐标代入中得到关于a的方程,然后解此方程即可;(2)利用配方法把抛物线解析式配成顶点式即可得到顶点坐标.试题解析:(1)把C(5,4)代入得,解得;(2)∵,∴抛物线解析式为,所以抛物线的顶点坐标为(,).考点:1.二次函数图象上点的坐标特征;2.二次函数的性质.16.16【分析】由题中条件可得四边形DBFE是平行四边形,再由平行线分线段成比例的性质求得线段BD、DE的长,进而可求其周长.【详解】解:∵DE∥BC,EF∥AB,∴四边形DBFE是平行四边形,∴EF=BD,DE=BF,∵DE∥BC,∴,∵AE=2CE,∴=,∴DE=6,AD=4,即BD=2,∴四边形BDEF的周长=2(BD+DE)=2×(6+2)=16.【点睛】本题主要考查了平行四边形的判定和性质以及平行线分线段成比例定理,应能够熟练掌握.17.(1)详见解析;(2)B′(﹣6,2),C′(﹣4,﹣2);(3)10.【分析】(1)分别延长BO,CO,使B′O=2BO,C′O=2CO,然后连接B′C′即可;(2)根据图形写出坐标即可;(3)利用网格把三角形放到矩形里面,然后利用矩形的面积减去四周三个小直角三角形的面积,求解即可.【详解】解:(1)如图;(2)由图可得:B′(﹣6,2),C′(﹣4,﹣2);(3)S△OB′C′=S矩形AB′DE﹣S△AB′O﹣S△B′DC′﹣S△C′EO,=6×4﹣×2×6﹣×4×2﹣×4×2,=24﹣14,=10,即△OB′C′的面积为10.【点睛】本题主要考查了利用位似变换作图以及“割补法”求面积,割补法是求图形面积的常用方法,有一定难度.18.C△ADE=36m,S△ADE=16(m2).【分析】首先证明△ADE∽△ABC,求出相似比,然后根据相似三角形的性质列出比例式求△ADE的周长和面积即可.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∴,∵AB的长由原来的30米缩短成BD为18米,∴AD=12m,∴,解得:C△ADE=36(m),∵,∴S△ADE=16(m2).【点睛】此题主要考查了相似三角形的应用,根题意得出△ADE∽△ABC求出相似比是解题关键.19.(1)y=,y=x﹣3;(2);(3)﹣1<x<0或x>4.【分析】(1)把点A(4,1)代入反比例函数y=得到m=4,即反比例函数的解析式为y=,然后求出B(﹣1,﹣4),再把点A(4,1)与点B(﹣1,﹣4)代入一次函数y=kx+b求出k和b即可;(2)求出点C坐标,然后根据三角形的面积公式即可得到结论;(3)观察函数图象,找出一次函数图象在反比例函数图象上方时对应的x的取值范围即可.【详解】解:(1)∵点A(4,1)在反比例函数y=(m≠0)的图像上,∴m=4,即反比例函数的解析式为y=,当x=﹣1时,n=﹣4,即B(﹣1,﹣4),∵点A(4,1)与点B(﹣1,﹣4)在一次函数y=kx+b(k≠0)的图象上,∴,解得:∴一次函数解析式为y=x﹣3;(2)对于y=x﹣3,当y=0时,x=3,∴C(3,0)∴S△AOB=S△AOC+S△BOC=;(3)由图象可得,当﹣1<x<0或x>4时,一次函数的值大于反例函数的值.【点睛】本题考查的是反比例函数与一次函数的交点问题及三角形的面积公式,熟知坐标轴上点的坐标特点是解答此题的关键.20.(1)y=(x﹣3)2﹣2;(2)详见解析.【分析】(1)设出二次函数解析式的顶点式,代入A(1,0)求出a即可;(2)求出点B坐标,画出函数G的图像,然后依据函数图象进行回答即可.【详解】解:(1)由上述信息可知该函数图象的顶点坐标为:(3,﹣2),设二次函数的表达式为:y=a(x﹣3)2﹣2.∵该函数图象经过点A(1,0),∴0=a(1﹣3)2﹣2,解得a=,∴二次函数解析式为:y=(x﹣3)2﹣2;(2)∵A(1,0),对称轴是x=3;∴B(5,0),如图所示:当m>0时,直线y=m与G有一个交点;当m=0时,直线y=m与G有两个交点;当﹣2<m<0时,直线y=m与G有三个交点;当m=﹣2时,直线y=m与G有两个交点;当m<﹣2时,直线y=m与G有一个交点.【点睛】本题主要考查的是二次函数的图象和性质、待定系数法求二次函数的解析式,数形结合是解题的关键.21.(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)证明△EFB∽△DFC,根据相似三角形对应角相等可得∠EFB=∠FDC,从而证得BD⊥AC;(2)由∽,可得,从而证明∽,根据相似三角形的性质可得,再根据,从而得∽,根据相似三角形的性质即可得.试题解析:(1),,,∽,,,,,;∽,,,,∽,,,,∽,,.

22.(1);(2);(3)x=8时,w有最大值144万元.【详解】分析:(1)根据表格中的数据可以求得各段对应的函数解析式,本题得以解决;(2)根据题目中的解析式和(1)中的解析式可以解答本题;(3)根据(2)中的解析式可以求得各段的最大值,从而可以解答本题.详解;(1)当1≤x≤9时,设每件产品利润z(元)与月份x(月)的关系式为z=kx+b,,得,即当1≤x≤9时,每件产品利润z(元)与月份x(月)的关系式为z=-x+20,当10≤x≤12时,z=10,由上可得,z=;(2)当1≤x≤8时,w=(-x+20)(x+4)=-x2+16x+80当9≤x≤10时,w=(-x+20)(-x+20)=x2-40x+400;当11≤x≤12时,w=10(-x+20)=-10x+200;∴w与x的关系式为:;(3)当1≤x≤8时,w=-x2+16x+80=-(x-8)2+144,∴当x=8时,w取得最大值,此时w=144;当x=9时,w=121,当10≤x≤12时,w=-10x+200,则当x=10

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论