版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第10讲三角形与全等三角形(压轴题组)1.(2021·江西赣州·九年级期中)如图1,在等腰直角三角形ABC中,∠BAC=90°,点E,F分别为AB,AC的中点,H为线段EF上一动点(不与点E,F重合),将线段AH绕点A逆时针方旋转90°,得到AG,连接GC,HB.(1)证明:△AHB≌△AGC(2)如图2,连接HG和GF,其中HG交AF于点Q.①证明:在点H的运动过程中,总有∠HFG=90°;②若AB=AC=4,当EH的长度为多少时,△AQG为等腰三角形?2.(2021·北京市第三十一中学九年级期中)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF.G为DF的中点,连接EG,CG,EC.(1)如图1,若点E在CB边的延长线上,直接写出EG与GC的位置关系及的值;(2)将图1中的△BEF绕点B顺时针方向旋转至图2所示位置,在(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)将图1中的△BEF,绕点B顺时针旋转(0°<<90°),若BE=1,AB=,当E,F,D三点共线时,求DF的长.3.(2021·湖北青山·九年级期中)已知,在菱形ABCD中,∠BCD=60°,将边CD绕点C顺时针旋转α°(0<α<120),得到线段CE,连接ED、ED或其延长线交∠BCE的角平分线于点F.(1)如图1,若α=20,直接写出∠E与∠CFE的度数;(2)如图2,若60<α<120.求证:EF﹣DF=CF;(3)如图3,若AB=6,点G为AF的中点,连接BG,则DC旋转过程中,BG的最大值为.
4.(2021·福建安溪·九年级期中)在等腰直角△ABC中,AB=AC,点D在底边BC上,∠EDF的两边分别交AB、AC所在直线于E、F两点,∠EDF=2∠ABC,BD=nCD.(1)如图1,若n=1,则DEDF;(填“>”“<”或“=”)(2)连接EF.①如图2,沿着直线EF折叠,使得点A落在边BC上的D点,求的值(含n的式子表示);②如图3,EFBC,且,求出n的值.5.(2021·陕西莲湖·九年级期中)在菱形ABCD中,∠ABC=60°,P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.问题提出(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是,CE与CB的位置关系是.(2)如图2,当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由.问题解决(3)如图3,连湖公园有一块观赏园林区,其形状是一个边长为20m的菱形ABCD,其中∠ABC=60°,对角线BD是一条花间小径,现计划在BD延长线上(包括D点)取点P,以AP为边长修建一个等边△APE的娱乐区,放置各类运动娱乐设施,从娱乐区顶点E再修一条直直的小路BE,为了让游客们更轻松愉快地游玩,园区还计划在BE中点处设置一个直饮水点F,求饮水点F到C点的最短距离.6.(2021·陕西·交大附中分校九年级期中)问题研究,如图,在等腰△ABC中,,点、为底边上的两个动点(不与、重合),且.(1)请在图中找出一个与相似的三角形,这个三角形是__________;
(2)若,分别过点、作、的垂线,垂足分别为、,且、的反向延长线交于点,若,求四边形的面积;
问题解决(3)如图所示,有一个矩形仓库,其中米,米,现计划在仓库的内部的、两处分别安装监控摄像头,其中点在边上,点在边上.设计要求且,则的长应为多少米?
7.(2021·黑龙江·哈尔滨市第六十九中学校九年级期中)如图,在平面直角坐标系中,直线AB的解析式为y=kx+3分别交x轴、y轴于点A、B,∠BAO=45°.(1)求直线AB的解析式;(2)点C在x轴负半轴上,连接CB,过点B作BC的垂线交x轴于点P,设点P的横坐标为t,△BAP的面积为S,求S与t之间的函数解析式,(不要求写出自变量t的取值范围);(3)在(2)的条件下,延长BC至Q,使BQ=BP,过点Q作x轴的垂线交x轴于点D,点E为线段CQ的中点,过点E作BQ的垂线交BD的延长线与点F,若EF=,求Q点坐标.8.(2021·河南·金明中小学九年级期中)把两个等腰直角△ABC和△ADE按如图1所示的位置摆放,将△ADE绕点A按逆时针方向旋转,如图2,连接,,设旋转角为().(1)如图1,与的数量关系是___________,与的位置关系是___________;(2)如图2,(1)中和的数量关系和位置关系是否仍然成立,若成立,请证明;若不成立请说明理由.(3)如图3,当点D在线段上时,___________.(4)当旋转角__________时,的面积最大.9.(2021·北京·景山学校九年级期中)在△ABC中,AB=2,CD⊥AB于点D,CD=.(1)如图1,当点D是线段AB中点时,①AC的长为;②延长AC至点E,使得CE=AC,此时CE与CB的数量关系为,∠BCE与∠A的数量关系为.(2)如图2,当点D不是线段AB的中点时,画∠BCE(点E与点D在直线BC的异侧),使∠BCE=2∠A,CE=CB,连接AE.①按要求补全图形;②求AE的长.10.(2021·山西·九年级期中)综合与实践问题情境:数学活动课上,老师要求学生出示两个大小不一样的等腰直角三角形,如图1所示,把Rt△ADE和Rt△ABC摆在一起,其中直角顶点A重合,延长CA至点F,满足AF=AC,然后连接DF、BE.实践猜想:(1)图1中的BE与DF的数量关系为:,位置关系为:.猜想证明:(2)当△A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度钢筋混凝土工程质量保修合同
- 《主题班会》课件
- 婴幼儿夏季护理
- 《建实务模考班》课件
- 2024版房地产项目开发合作合同2篇
- 气管异物的护理
- 《抽样调查及其方法》课件
- 电梯维保合同
- 解聘终止劳动合同证明书
- 《高血压患者教育》课件
- (完整版)项目部安全隐患排查表
- 机械制图三视图说课课件
- 关于形势政策香港问题论文【三篇】
- 践行核心价值观争做新时代好少年课件
- 射频消融治疗热肿瘤中的热沉效应与治疗效应的分析
- 换向阀的常见故障及维修方法
- 组织能力建设培训
- 大连地区适合种植药材
- 2022历史小说《漆园吏游梁》分析
- 产品质量整改措施
- 五禽戏Five Animal-imitating Exercise(中英文版)
评论
0/150
提交评论