




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
嘉兴市重点中学2025届高考压轴卷数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知的内角的对边分别是且,若为最大边,则的取值范围是()A. B. C. D.2.如图,已知直线与抛物线相交于A,B两点,且A、B两点在抛物线准线上的投影分别是M,N,若,则的值是()A. B. C. D.3.设双曲线(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D.若D到直线BC的距离小于,则该双曲线的渐近线斜率的取值范围是()A.B.C.D.4.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}时,A∩B=()A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.∅5.《周易》是我国古代典籍,用“卦”描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻).若从含有两个及以上阳爻的卦中任取两卦,这两卦的六个爻中都恰有两个阳爻的概率为()A. B. C. D.6.已知直线是曲线的切线,则()A.或1 B.或2 C.或 D.或17.函数的大致图像为()A. B.C. D.8.函数的图象如图所示,则它的解析式可能是()A. B.C. D.9.设为非零向量,则“”是“与共线”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件10.已知角的终边经过点,则A. B.C. D.11.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为()A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺12.已知函数,若,则a的取值范围为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,,是平面向量,是单位向量.若,,且,则的取值范围是________.14.数学家狄里克雷对数论,数学分析和数学物理有突出贡献,是解析数论的创始人之一.函数,称为狄里克雷函数.则关于有以下结论:①的值域为;②;③;④其中正确的结论是_______(写出所有正确的结论的序号)15.在中,内角的对边长分别为,已知,且,则_________.16.点P是△ABC所在平面内一点且在△ABC内任取一点,则此点取自△PBC内的概率是____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知,分别是正方形边,的中点,与交于点,,都垂直于平面,且,,是线段上一动点.(1)当平面,求的值;(2)当是中点时,求四面体的体积.18.(12分)已知抛物线Γ:y2=2px(p>0)的焦点为F,P是抛物线Γ上一点,且在第一象限,满足(2,2)(1)求抛物线Γ的方程;(2)已知经过点A(3,﹣2)的直线交抛物线Γ于M,N两点,经过定点B(3,﹣6)和M的直线与抛物线Γ交于另一点L,问直线NL是否恒过定点,如果过定点,求出该定点,否则说明理由.19.(12分)如图,椭圆的长轴长为,点、、为椭圆上的三个点,为椭圆的右端点,过中心,且,.(1)求椭圆的标准方程;(2)设、是椭圆上位于直线同侧的两个动点(异于、),且满足,试讨论直线与直线斜率之间的关系,并求证直线的斜率为定值.20.(12分)已知三点在抛物线上.(Ⅰ)当点的坐标为时,若直线过点,求此时直线与直线的斜率之积;(Ⅱ)当,且时,求面积的最小值.21.(12分)已知函数.(1)当时,求的单调区间;(2)若函数有两个极值点,,且,为的导函数,设,求的取值范围,并求取到最小值时所对应的的值.22.(10分)已知的内角,,的对边分别为,,,.(1)若,证明:.(2)若,,求的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
由,化简得到的值,根据余弦定理和基本不等式,即可求解.【详解】由,可得,可得,通分得,整理得,所以,因为为三角形的最大角,所以,又由余弦定理,当且仅当时,等号成立,所以,即,又由,所以的取值范围是.故选:C.【点睛】本题主要考查了代数式的化简,余弦定理,以及基本不等式的综合应用,试题难度较大,属于中档试题,着重考查了推理与运算能力.2、C【解析】
直线恒过定点,由此推导出,由此能求出点的坐标,从而能求出的值.【详解】设抛物线的准线为,直线恒过定点,如图过A、B分别作于M,于N,由,则,点B为AP的中点、连接OB,则,∴,点B的横坐标为,∴点B的坐标为,把代入直线,解得,故选:C.【点睛】本题考查直线与圆锥曲线中参数的求法,考查抛物线的性质,是中档题,解题时要注意等价转化思想的合理运用,属于中档题.3、A【解析】
由题意,根据双曲线的对称性知在轴上,设,则由得:,因为到直线的距离小于,所以,即,所以双曲线渐近线斜率,故选A.4、B【解析】试题分析:由集合A中的函数y=lg(4-x2),得到4-x2>0,解得:-2<x<2,∴集合A={x|-2<x<2},由集合B中的函数考点:交集及其运算.5、B【解析】
基本事件总数为个,都恰有两个阳爻包含的基本事件个数为个,由此求出概率.【详解】解:由图可知,含有两个及以上阳爻的卦有巽、离、兑、乾四卦,取出两卦的基本事件有(巽,离),(巽,兑),(巽,乾),(离,兑),(离,乾),(兑,乾)共个,其中符合条件的基本事件有(巽,离),(巽,兑),(离,兑)共个,所以,所求的概率.故选:B.【点睛】本题渗透传统文化,考查概率、计数原理等基本知识,考查抽象概括能力和应用意识,属于基础题.6、D【解析】
求得直线的斜率,利用曲线的导数,求得切点坐标,代入直线方程,求得的值.【详解】直线的斜率为,对于,令,解得,故切点为,代入直线方程得,解得或1.故选:D【点睛】本小题主要考查根据切线方程求参数,属于基础题.7、D【解析】
通过取特殊值逐项排除即可得到正确结果.【详解】函数的定义域为,当时,,排除B和C;当时,,排除A.故选:D.【点睛】本题考查图象的判断,取特殊值排除选项是基本手段,属中档题.8、B【解析】
根据定义域排除,求出的值,可以排除,考虑排除.【详解】根据函数图象得定义域为,所以不合题意;选项,计算,不符合函数图象;对于选项,与函数图象不一致;选项符合函数图象特征.故选:B【点睛】此题考查根据函数图象选择合适的解析式,主要利用函数性质分析,常见方法为排除法.9、A【解析】
根据向量共线的性质依次判断充分性和必要性得到答案.【详解】若,则与共线,且方向相同,充分性;当与共线,方向相反时,,故不必要.故选:.【点睛】本题考查了向量共线,充分不必要条件,意在考查学生的推断能力.10、D【解析】因为角的终边经过点,所以,则,即.故选D.11、A【解析】由题意,将楔体分割为三棱柱与两个四棱锥的组合体,作出几何体的直观图如图所示:
沿上棱两端向底面作垂面,且使垂面与上棱垂直,
则将几何体分成两个四棱锥和1个直三棱柱,
则三棱柱的体积V1四棱锥的体积V2=13×1×3×2=2【点睛】本题考查三视图及几何体体积的计算,其中正确还原几何体,利用方格数据分割与计算是解题的关键.12、C【解析】
求出函数定义域,在定义域内确定函数的单调性,利用单调性解不等式.【详解】由得,在时,是增函数,是增函数,是增函数,∴是增函数,∴由得,解得.故选:C.【点睛】本题考查函数的单调性,考查解函数不等式,解题关键是确定函数的单调性,解题时可先确定函数定义域,在定义域内求解.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先由题意设向量的坐标,再结合平面向量数量积的运算及不等式可得解.【详解】由是单位向量.若,,设,则,,又,则,则,则,又,所以,(当或时取等)即的取值范围是,,故答案为:,.【点睛】本题考查了平面向量数量积的坐标运算,意在考查学生对这些知识的理解掌握水平.14、②【解析】
根据新定义,结合实数的性质即可判断①②③,由定义求得比小的有理数个数,即可确定④.【详解】对于①,由定义可知,当为有理数时;当为无理数时,则值域为,所以①错误;对于②,因为有理数的相反数还是有理数,无理数的相反数还是无理数,所以满足,所以②正确;对于③,因为,当为无理数时,可以是有理数,也可以是无理数,所以③错误;对于④,由定义可知,所以④错误;综上可知,正确的为②.故答案为:②.【点睛】本题考查了新定义函数的综合应用,正确理解题意是解决此类问题的关键,属于中档题.15、4【解析】∵∴根据正弦定理与余弦定理可得:,即∵∴∵∴故答案为416、【解析】
设是中点,根据已知条件判断出三点共线且是线段靠近的三等分点,由此求得,结合几何概型求得点取自三角形的概率.【详解】设是中点,因为,所以,所以三点共线且点是线段靠近的三等分点,故,所以此点取自内的概率是.故答案为:【点睛】本小题主要考查三点共线的向量表示,考查几何概型概率计算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)【解析】
(1)利用线面垂直的性质得出,进而得出,利用相似三角形的性质,得出,从而得出的值;(2)利用线面垂直的判定定理得出平面,进而得出四面体的体积,计算出,,即可得出四面体的体积.【详解】(1)因为平面,平面,所以又因为,都垂直于平面,所以又,分别是正方形边,的中点,且,所以.(2)因为,分别是正方形边,的中点,所以又因为,都垂直于平面,平面,所以因为平面,所以平面所以,四面体的体积,所以.【点睛】本题主要考查了线面垂直的性质定理的应用,以及求棱锥的体积,属于中档题.18、(1)y2=4x;;(2)直线NL恒过定点(﹣3,0),理由见解析.【解析】
(1)根据抛物线的方程,求得焦点F(,0),利用(2,2),表示点P的坐标,再代入抛物线方程求解.(2)设M(x0,y0),N(x1,y1),L(x2,y2),表示出MN的方程y和ML的方程y,因为A(3,﹣2),B(3,﹣6)在这两条直线上,分别代入两直线的方程可得y1y2=12,然后表示直线NL的方程为:y﹣y1(x),代入化简求解.【详解】(1)由抛物线的方程可得焦点F(,0),满足(2,2)的P的坐标为(2,2),P在抛物线上,所以(2)2=2p(2),即p2+4p﹣12=0,p>0,解得p=2,所以抛物线的方程为:y2=4x;(2)设M(x0,y0),N(x1,y1),L(x2,y2),则y12=4x1,y22=4x2,直线MN的斜率kMN,则直线MN的方程为:y﹣y0(x),即y①,同理可得直线ML的方程整理可得y②,将A(3,﹣2),B(3,﹣6)分别代入①,②的方程可得,消y0可得y1y2=12,易知直线kNL,则直线NL的方程为:y﹣y1(x),即yx,故yx,所以y(x+3),因此直线NL恒过定点(﹣3,0).【点睛】本题主要考查了抛物线的方程及直线与抛物线的位置关系,直线过定点问题,还考查了转化化归的思想和运算求解的能力,属于中档题.19、(1);(2)详见解析.【解析】试题分析:(1)利用题中条件先得出的值,然后利用条件,结合椭圆的对称性得到点的坐标,然后将点的坐标代入椭圆方程求出的值,从而确定椭圆的方程;(2)将条件得到直线与的斜率直线的关系(互为相反数),然后设直线的方程为,将此直线的方程与椭圆方程联立,求出点的坐标,注意到直线与的斜率之间的关系得到点的坐标,最后再用斜率公式证明直线的斜率为定值.(1),,又是等腰三角形,所以,把点代入椭圆方程,求得,所以椭圆方程为;(2)由题易得直线、斜率均存在,又,所以,设直线代入椭圆方程,化简得,其一解为,另一解为,可求,用代入得,,为定值.考点:1.椭圆的方程;2.直线与椭圆的位置关系;3.两点间连线的斜率20、(Ⅰ);(Ⅱ)16.【解析】
(Ⅰ)设出直线的方程并代入抛物线方程,利用韦达定理以及斜率公式,变形可得;(Ⅱ)利用,,的斜率,求得的坐标,,再用基本不等式求得的最小值,从而可得三角形的面积的最小值.【详解】解:(Ⅰ)设直线的方程为.联立方程组,得,,故,.所以;(Ⅱ)不妨设的三个顶点中的两个顶点在轴右侧(包括轴),设,,,的斜率为,又,则,①因为,所以②由①②得,,(且)从而当且仅当时取“”号,从而,所以面积的最小值为.【点睛】本题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 严格环保管理制度
- 中介规章管理制度
- 中国后宫管理制度
- 中国旺旺管理制度
- 中央投资管理制度
- 中学体艺管理制度
- 中学出入管理制度
- 中学团员管理制度
- 中学科研管理制度
- 中心会议管理制度
- 老年友善医院护理培训
- 核电行业核电站安全运行与应急预案方案
- 培训学员管理制度范文(2篇)
- 《有效团队管理培训》课件
- 2024-2025学年新教材高中化学 第四章 物质结构 元素周期律 4.1.1 原子结构与元素周期表教案 新人教版必修第一册
- 2023-2024学年广东省深圳市福田区七年级(下)期末英语试卷
- 2024年陕西省专业技术人员继续教育学习平台党史党纪专题学习考试答案
- 8.3 法治社会 课件高中政治统编版必修三政治与法治
- 医疗器械经营质量体系文件-质量管理制度
- DB11T 811-2011 场地土壤环境风险评价筛选值
- 电机噪声与振动分析考核试卷
评论
0/150
提交评论