稳态条件下流体动压径向滑动轴承 圆柱滑动轴承 第1部分:计算过程 征求意见稿_第1页
稳态条件下流体动压径向滑动轴承 圆柱滑动轴承 第1部分:计算过程 征求意见稿_第2页
稳态条件下流体动压径向滑动轴承 圆柱滑动轴承 第1部分:计算过程 征求意见稿_第3页
稳态条件下流体动压径向滑动轴承 圆柱滑动轴承 第1部分:计算过程 征求意见稿_第4页
稳态条件下流体动压径向滑动轴承 圆柱滑动轴承 第1部分:计算过程 征求意见稿_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1滑动轴承稳态条件下流体动压径向滑动轴承圆柱形滑动轴承第1部分:计算过程本文件规定了流体动压油润滑滑动轴承工作性能的计算流程,该类轴承通过动压油膜将轴颈和轴校核轴承的安全性。本文件可用于设计运行可靠的油润滑流体动压圆柱形滑动轴轴承的计算。如忽略温升与压力引起的变形,该类轴承的几何间隙件不适用于动载荷工况(即载荷的方向和/或大小随时间变化的工况,这些变化可能由振动或高速运转21466.2—20XX,ISO7902-2(GB/T21466.3—20XX,ISO794.符号和单位2Am2mbPmBmBHmcpCmCR,effmdLmDmDHmDJmDJ,maxmmDmaxmmemf1f/1FNFfN'FfNhmheffmmmmmHmkANBNJpPapPapenplimPaplimPfWP/fWWWWWqL11Qm3/sm3/s1m3/s1RzBmRzJmRe1So11TTBTTT4TTJT TL UBUJxmymzmαl,BK-1αl,JK-1βε1εu1ηηeffνm2/sξ1ξ’在承载区和非承载区均具有完整油膜的摩擦阻1ξG1ξP1Pφradφ1radφ2radΨ1Ψ1Ψeff1Ψmax1Ψmin1①B①F①h①JΩΩGΩP采用有限宽轴承假设对雷诺微分方程进行数值在推导和求解雷诺方程(1)时,需要如下一些假设和前提条件,其合理性已在实验和实践中得到了充分证实:f)润滑油的离心力、重力和磁力忽略不计;g)轴颈和轴瓦是理想刚性的圆柱或圆柱段,其变形可忽略不计;j)油膜厚度方向上(y轴方向)油膜压力的波动可忽略不计;m)润滑油在轴承的起始点或润滑间隙最大处流入;供油压力相对于间隙内的油膜压力可忽略不——压力起始位置:p(φ1,z)=0;——轴承轴向边缘:p(φ,z=±B2)=0;——压力终止位置:p[φ2(z),z]=0;——∂p∂φ[φ2(z),z]=0。p(φ=φ2,z)=0一系列离散的网格点,然后利用合适的数值方法如有限差分法或有限元法将偏微分方程转换为一组线和[16]提出的不等间距网格在不改变节点数目的前提下提高计算6然而,在某些特定工况下,经协商,运行参数也可超出GB/T21对于Re>41.3D/CR,eff的滑动轴承(例如线速度高通过会有更高的功耗和轴承温度,本文件不开始开始输入参数和尺寸D,D,DD,D,D,D,F,kA,pen,,p,,,,供油条件,润滑剂粘度参数<>本标准不适用确保参数否<>本标准不适用Re≤41.3D/CCR,effv是<>重新确定尺寸<>重新确定尺寸是冷却方式Tex,0新的TB,0Tex,0新的TB,0T变量Teff,ηeff,Ψeff,So,hmin,pth,f,Q,β否否否<><><><>是是是<><>否<><>否重新确定尺寸轴承座散热?(a)是轴承座散热?(a)是是<>重新确定尺寸重新确定尺寸否<>重新确定尺寸重新确定尺寸否是输出结果是通过压力供油润滑法冷却(b)结束结束8——相对于理想几何尺寸的偏差(加工公差,装配偏差等在轴承性能计算时,需要考虑以下因素(从已知轴承几何尺寸和工况参-承载能力和油膜厚度之间的关系;-摩擦功耗;-润滑油流量;-热平衡状态。偏差,轴承允许具有一定的磨合过程,但注意磨合过程只能发密切相关。在确保滑动轴承性能不受损害的前提下,允许轴承具有一定程度的永久变轴承材料的热稳定性、润滑油的温黏特性以及润滑油的抗老化计算结果应与GB/T21466.3中的h=0.5DΨeff(1+εcosφ)在φ=φ1+π处有润滑油膜最小厚度,可按式(7)计算:上式中,ε为偏心率可按式(8)计算:9轴承承载能力的特征参数是无量纲索莫菲尔德数So,可按式(9)计算:根据偏位角β及偏心率ε(见GB/T21466.2可确定最小润滑油膜厚度及其所在位置。对于圆柱形轴承(Ω=360°),供油周向位置宜在最大润滑间隙处,或者在最大间隙的上游一点。最大间隙的位置可根据偏位角β确定。在流体动压滑动轴承里,由黏性剪应力产生的摩擦力可通过摩擦因数f=FfF和摩擦阻力因数ξ与f/Ψeff计算得到。上述公式适用于仅在承载区具有完整油膜的摩擦与式(11)中用f,,Ff,,ξ,,代替f,Ff,ξ,。其中不同ε、BD和Ω时的与的值在GB/T21466.2中给出,同时也给出可用于h,f=fFUJ=fF(12)UJ侧流出。由于油膜压力所造成的测泄流量为Q3:3eff供油压力pen使多余的润滑油从轴承进油槽或进油腔两侧流出。由于进油压力所造成的润滑油流量为Qp:式中无量纲供油压力侧泄流量Q=Q(ε,B/D,Ω)在GB/T21466.滑油的供给压力pen宜远小于轴承比压p,pen通常的取值范围为0.05MPa~0.2MPa,进油槽或进油腔承载区布置周向油槽是有益的。计算热平衡时需要考虑油槽的供油压力侧泄流量Qp。上通常较窄。进油腔相对轴向宽度应该bp/B<0.7,虽然更宽的相对宽度会增加油两侧流出的润滑油不起散热作用,尤其是当进油腔在轴向贯通时,更不起散热作对于圆柱形轴承(Ω=360°),当只有一个进油腔时,应将其加工在载荷方向的反方向;当有两个区)的剪切摩擦生热,同时也应该把润滑油腔的区域考虑进去。b)对于有压力油供给的轴承,热量主要通过润滑油的侧泄流动带走:Pt轴承座的传导散热是先通过热传导将油膜产生的热量传递到轴承座表面,再由空气的热对流和热P式中:kA=15W/(m2·K)~20W/(m2·K)。─对于圆柱形座体:─对于机械结构中的轴承:H为支承轴承总长度。P轴承温度TB(见参考文献[17]润滑油的出口温度Tex(见参考文献[17]与等效润滑油膜温当线速度很高时,可选择与润滑油出口温度rex接近的值来代替的入口ren和出口rex的平均值。在计算得到TB和Tex后,应将它们与许用最高温度Tlim(在GB/T214在初始计算状态,只有环境温度Tamb或供油温度Ten是已知的,在开始迭代计算时,可使用20K温升来开始计a)TB,0未满足要求,则采用平均值校正所得的温度TB,1或Tex,1,并进行迭代,直至假设温度与计算温度之间的如果滑动轴承长时间工作在随时间变化的几种工况条当轴承的最小膜厚达到GB/T21466.3规定的许用最小膜厚hlim时,轴颈和轴承的粗糙度峰发生接εuSoU却系统也立即停止工作,则热量可能会在轴承中积聚,故(29)忽略不计,忽略压黏效应会使计算结果偏保守,增加了设计的润滑油的动力黏度与剪切速率以及服役寿命等因素相关,例如具有添加剂的多级润滑油可能存在DDDDDDDD 如果轴颈和轴承的线性膨胀系数αl,J与αl,B相同,则冷态(20℃)间隙造成的等效间隙比的变化[见公式(34)]。此外,薄的轴承衬层对热膨胀的影响可忽略如果轴颈与轴承基体的线性膨胀系数不同,则间隙比的_A.1例1:直径120mm、包角360°、整体圆柱形轴承本例以直径D=120mm、宽度B=60mm的全包角轴承(Ω=360°)为研究对象,其载荷为F=36000N、转速为NJ=33.33s-1。假设运行工况是热平衡计算时的临界工况。轴承座的㎡,轴承座及轴衬材料为铝合金,轴的材料是钢。润滑油经由直径为dL=5mm供油口提A.1.1尺寸和运行数据F=36000NBBΩ=360ODJ,min=119.930×10−3mBD=0.5轴承表面粗糙度Rz轴颈表面粗糙度Rzαl,B=23×10−6K-1αl,J=11×10−6K-1ηeff(Teff)(Pa.s)A=0.3m2pen5Pa6PamRe=27.14<1073.5因p<plim,故轴承比压p在许用范围之内。A.1.3传导散热T当Teff(120.070−119.930)×10−3 -轴颈的角速度:-轴承的角速度:根据索莫菲尔德可查得轴承工作状态下偏心率(见GB/T21466.2)mPth,fPTT,0,0)123456TηeffΨeff1So1ε1mf'/Ψeff1WTTi+1B,0A.1.4润滑散热T当Teffηeff=36000×1.5762×10−6120×10×60×10×0.0271×209.42(B)(D,ε=f|So,,Ω=(D,hmin=0.5×120×10−3×1f'f'(B)Ψeff=Ψeff|(So,D,Ω,=2.78f'=Ψeff×Ψeff=2.783120×10−3Pth,f=4.881×10−×3600×2×209.42=1981.7N.m/s=1981.7W根据索莫菲尔德数,可查得油膜压力所造成的侧泄流量为[见式(14)和GB/T21466.2]5(5)2(5)3qL=1.204+0.368×60−1.046×|(60,+1.942×(|60,=1.229Qp=×0.1303=16.26×10−6m3/sT表A.3通过润滑油流动散热的迭代计算过程123TηeffΨeff11.576×10−31.562×10−3So1ε1m16.55×10−616.49×10−6−6fΨeff1Wm3/s55.21×10−654.55×10−654.2×10−6m3/s16.32×10−615.14×10−614.58×10−6Qm3/s71.53×10−668.78×10−6TT此外也可用图表插值法代替迭代法计算。图标插值法计算通过一系列的假设温度TB或期望温度Tex表A.4通过润滑油流动散热的第二次迭代计算结果1234TenTηeffPa.sΨeff1So1ε1hminmfΨeff1fWQm3/sPQWA.2例2:直径1010mm、包角150°、剖分圆柱形轴承A.2.1尺寸和运行数据NJ=1.4283s−1JhJhΩ=150Omηeff(Teff)(Pa.s)plimT6plimThlimhlim 2×0.0431×1.4283×10−3×1010×10−3×900=47.9<2×0.0431Re=47.9<1306因p<plim,故轴承的比压p是可用的。表A.6给出了每个计算步骤的中间结果,在计算的第四步,润滑油初始假设的出口温度Tex,0与计算所得的温度Tex,1之差小于1℃。因而,计算所得的润滑油出口温度Tex已达到足够的精度等级。1234TenTex,0TηeffPa.sSo1ε1hminmfΨeff1fWQ3m3/s46.88×10−5Tex,1Tex,0A.3例3:直径200mm、包角150°、上瓦开槽剖分圆柱形轴承承通过上半部提供压力润滑油,如图A.3所示。轴承上半A.3.1尺寸和运行数据s−1s−1JhJhΩ=150OmhG=2.5×10−3mhP=2.5×10−3mηeff(Teff)(Pa.s)pen=0.5×105PaPcp limhlim=20×10−6mA.3.2计算过程假定轴承温度为TB,0=60OC,润滑油密度为P=900kg/m3时,校核油膜的流动状态[见式(4)Re=201.96<923.5因p<plim,故轴承的比压p在许用范围之内。表A.8通过润滑油流动散热的迭代计算过程(同时考1234TenTex,0TηeffPa.sSo1ε1hminm53.2×10−655×10−660.4×10−6fΨeff1fWQ3m3/s109.27×10−6109.27×10−6pm3/s172.03×10−6Q331.93×10−6311.51×10−6280.55×10−6上瓦进油槽的包角ΩG为π,两侧进油腔的包角Ωp为π/3。Ff,3)2(60×10−3)3qP200335QpP6(T给出了相应的中间计算结果。与之前相同,假设润滑油充满了润滑间隙的承载区与非承载qPln|3×2.4082(60×10−,200335Qp=0.022表A.9通过润滑油流动散热的迭代计算过程(仅考虑进油腔的供油压力侧泄,不考虑上瓦进1234TenTηeffSo1ε1m58×10−6f'/Ψeff15PfW61.91×10−656.98×10−651.78×10−6QTT11223344556677—参考文献Plainbearings—Terms,definitions,classificatfincludinganexperimentaldeterminationoftheviscosityofoliveoil.PhiLTrOstwaldsKlassikerderexaktenWissenschaften,Leipzig.Nr.218,Leipzig,1927.[4]SommerfeldA.,ZurhydrodynamischenTheoriederSchmiermittelreibun

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论