广西钦州市浦北县2025届高三第二次诊断性检测数学试卷含解析_第1页
广西钦州市浦北县2025届高三第二次诊断性检测数学试卷含解析_第2页
广西钦州市浦北县2025届高三第二次诊断性检测数学试卷含解析_第3页
广西钦州市浦北县2025届高三第二次诊断性检测数学试卷含解析_第4页
广西钦州市浦北县2025届高三第二次诊断性检测数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西钦州市浦北县2025届高三第二次诊断性检测数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为,大圆柱底面半径为,如图1放置容器时,液面以上空余部分的高为,如图2放置容器时,液面以上空余部分的高为,则()A. B. C. D.2.已知等差数列的前项和为,若,,则数列的公差为()A. B. C. D.3.已知集合,,则等于()A. B. C. D.4.函数的图象的大致形状是()A. B. C. D.5.已知等差数列中,若,则此数列中一定为0的是()A. B. C. D.6.如图,在正方体中,已知、、分别是线段上的点,且.则下列直线与平面平行的是()A. B. C. D.7.在直角中,,,,若,则()A. B. C. D.8.设,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件9.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有()A.12种 B.18种 C.24种 D.64种10.双曲线的渐近线方程是()A. B. C. D.11.已知复数满足(是虚数单位),则=()A. B. C. D.12.复数(为虚数单位),则等于()A.3 B.C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.在棱长为的正方体中,是正方形的中心,为的中点,过的平面与直线垂直,则平面截正方体所得的截面面积为______.14.已知是抛物线上一点,是圆关于直线对称的曲线上任意一点,则的最小值为________.15.正方形的边长为2,圆内切于正方形,为圆的一条动直径,点为正方形边界上任一点,则的取值范围是______.16.双曲线的左右顶点为,以为直径作圆,为双曲线右支上不同于顶点的任一点,连接交圆于点,设直线的斜率分别为,若,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)若数列满足:对于任意,均为数列中的项,则称数列为“数列”.(1)若数列的前项和,,试判断数列是否为“数列”?说明理由;(2)若公差为的等差数列为“数列”,求的取值范围;(3)若数列为“数列”,,且对于任意,均有,求数列的通项公式.18.(12分)每年的寒冷天气都会带热“御寒经济”,以交通业为例,当天气太冷时,不少人都会选择利用手机上的打车软件在网上预约出租车出行,出租车公司的订单数就会增加.下表是某出租车公司从出租车的订单数据中抽取的5天的日平均气温(单位:℃)与网上预约出租车订单数(单位:份);日平均气温(℃)642网上预约订单数100135150185210(1)经数据分析,一天内平均气温与该出租车公司网约订单数(份)成线性相关关系,试建立关于的回归方程,并预测日平均气温为时,该出租车公司的网约订单数;(2)天气预报未来5天有3天日平均气温不高于,若把这5天的预测数据当成真实的数据,根据表格数据,则从这5天中任意选取2天,求恰有1天网约订单数不低于210份的概率.附:回归直线的斜率和截距的最小二乘法估计分别为:19.(12分)在平面直角坐标系中,已知椭圆:()的左、右焦点分别为、,且点、与椭圆的上顶点构成边长为2的等边三角形.(1)求椭圆的方程;(2)已知直线与椭圆相切于点,且分别与直线和直线相交于点、.试判断是否为定值,并说明理由.20.(12分)如图,已知在三棱台中,,,.(1)求证:;(2)过的平面分别交,于点,,且分割三棱台所得两部分几何体的体积比为,几何体为棱柱,求的长.提示:台体的体积公式(,分别为棱台的上、下底面面积,为棱台的高).21.(12分)设函数.(1)若函数在是单调递减的函数,求实数的取值范围;(2)若,证明:.22.(10分)2019年入冬时节,长春市民为了迎接2022年北京冬奥会,增强身体素质,积极开展冰上体育锻炼.现从速滑项目中随机选出100名参与者,并由专业的评估机构对他们的锻炼成果进行评估打分(满分为100分)并且认为评分不低于80分的参与者擅长冰上运动,得到如图所示的频率分布直方图:(1)求的值;(2)将选取的100名参与者的性别与是否擅长冰上运动进行统计,请将下列列联表补充完整,并判断能否在犯错误的概率在不超过0.01的前提下认为擅长冰上运动与性别有关系?擅长不擅长合计男性30女性50合计1000.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(,其中)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

根据空余部分体积相等列出等式即可求解.【详解】在图1中,液面以上空余部分的体积为;在图2中,液面以上空余部分的体积为.因为,所以.故选:B【点睛】本题考查圆柱的体积,属于基础题.2、D【解析】

根据等差数列公式直接计算得到答案.【详解】依题意,,故,故,故,故选:D.【点睛】本题考查了等差数列的计算,意在考查学生的计算能力.3、B【解析】

解不等式确定集合,然后由补集、并集定义求解.【详解】由题意或,∴,.故选:B.【点睛】本题考查集合的综合运算,以及一元二次不等式的解法,属于基础题型.4、B【解析】

根据函数奇偶性,可排除D;求得及,由导函数符号可判断在上单调递增,即可排除AC选项.【详解】函数易知为奇函数,故排除D.又,易知当时,;又当时,,故在上单调递增,所以,综上,时,,即单调递增.又为奇函数,所以在上单调递增,故排除A,C.故选:B【点睛】本题考查了根据函数解析式判断函数图象,导函数性质与函数图象关系,属于中档题.5、A【解析】

将已知条件转化为的形式,由此确定数列为的项.【详解】由于等差数列中,所以,化简得,所以为.故选:A【点睛】本小题主要考查等差数列的基本量计算,属于基础题.6、B【解析】

连接,使交于点,连接、,可证四边形为平行四边形,可得,利用线面平行的判定定理即可得解.【详解】如图,连接,使交于点,连接、,则为的中点,在正方体中,且,则四边形为平行四边形,且,、分别为、的中点,且,所以,四边形为平行四边形,则,平面,平面,因此,平面.故选:B.【点睛】本题主要考查了线面平行的判定,考查了推理论证能力和空间想象能力,属于中档题.7、C【解析】

在直角三角形ABC中,求得,再由向量的加减运算,运用平面向量基本定理,结合向量数量积的定义和性质:向量的平方即为模的平方,化简计算即可得到所求值.【详解】在直角中,,,,,

若,则故选C.【点睛】本题考查向量的加减运算和数量积的定义和性质,主要是向量的平方即为模的平方,考查运算能力,属于中档题.8、B【解析】

先解不等式化简两个条件,利用集合法判断充分必要条件即可【详解】解不等式可得,解绝对值不等式可得,由于为的子集,据此可知“”是“”的必要不充分条件.故选:B【点睛】本题考查了必要不充分条件的判定,考查了学生数学运算,逻辑推理能力,属于基础题.9、C【解析】

根据题意,分2步进行分析:①,将4人分成3组,②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,将剩下的2组全排列,安排其他的2项工作,由分步计数原理计算可得答案.【详解】解:根据题意,分2步进行分析:①,将4人分成3组,有种分法;②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,有2种情况,将剩下的2组全排列,安排其他的2项工作,有种情况,此时有种情况,则有种不同的安排方法;故选:C.【点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.10、C【解析】

根据双曲线的标准方程即可得出该双曲线的渐近线方程.【详解】由题意可知,双曲线的渐近线方程是.故选:C.【点睛】本题考查双曲线的渐近线方程的求法,是基础题,解题时要认真审题,注意双曲线的简单性质的合理运用.11、A【解析】

把已知等式变形,再由复数代数形式的乘除运算化简得答案.【详解】解:由,得,.故选.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.12、D【解析】

利用复数代数形式的乘除运算化简,从而求得,然后直接利用复数模的公式求解.【详解】,所以,,故选:D.【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的乘除运算,复数的共轭复数,复数的模,属于基础题目.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

确定平面即为平面,四边形是菱形,计算面积得到答案.【详解】如图,在正方体中,记的中点为,连接,则平面即为平面.证明如下:由正方体的性质可知,,则,四点共面,记的中点为,连接,易证.连接,则,所以平面,则.同理可证,,,则平面,所以平面即平面,且四边形即平面截正方体所得的截面.因为正方体的棱长为,易知四边形是菱形,其对角线,,所以其面积.故答案为:【点睛】本题考查了正方体的截面面积,意在考查学生的空间想象能力和计算能力.14、【解析】

由题意求出圆的对称圆的圆心坐标,求出对称圆的圆坐标到抛物线上的点的距离的最小值,减去半径即可得到的最小值.【详解】假设圆心关于直线对称的点为,则有,解方程组可得,所以曲线的方程为,圆心为,设,则,又,所以,,即,所以,故答案为:.【点睛】该题考查的是有关动点距离的最小值问题,涉及到的知识点有点关于直线的对称点,点与圆上点的距离的最小值为到圆心的距离减半径,属于中档题目.15、【解析】

根据向量关系表示,只需求出的取值范围即可得解.【详解】由题可得:,故答案为:【点睛】此题考查求平面向量数量积的取值范围,涉及基本运算,关键在于恰当地对向量进行转换,便于计算解题.16、【解析】

根据双曲线上的点的坐标关系得,交圆于点,所以,建立等式,两式作商即可得解.【详解】设,交圆于点,所以易知:即.故答案为:【点睛】此题考查根据双曲线上的点的坐标关系求解斜率关系,涉及双曲线中的部分定值结论,若能熟记常见二级结论,此题可以简化计算.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)不是,见解析(2)(3)【解析】

(1)利用递推关系求出数列的通项公式,进一步验证时,是否为数列中的项,即可得答案;(2)由题意得,再对公差进行分类讨论,即可得答案;(3)由题意得数列为等差数列,设数列的公差为,再根据不等式得到公差的值,即可得答案;【详解】(1)当时,又,所以.所以当时,,而,所以时,不是数列中的项,故数列不是为“数列”(2)因为数列是公差为的等差数列,所以.因为数列为“数列”所以任意,存在,使得,即有.①若,则只需,使得,从而得是数列中的项.②若,则.此时,当时,不为正整数,所以不符合题意.综上,.(3)由题意,所以,又因为,且数列为“数列”,所以,即,所以数列为等差数列.设数列的公差为,则有,由,得,整理得,①.②若,取正整数,则当时,,与①式对应任意恒成立相矛盾,因此.同样根据②式可得,所以.又,所以.经检验当时,①②两式对应任意恒成立,所以数列的通项公式为.【点睛】本题考查数列新定义题、等差数列的通项公式,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力、运算求解能力,难度较大.18、(1),232;(2)【解析】

(1)根据公式代入求解;(2)先列出基本事件空间,再列出要求的事件,最后求概率即可.【详解】解:(1)由表格可求出代入公式求出,所以,所以当时,.所以可预测日平均气温为时该出租车公司的网约订单数约为232份.(2)记这5天中气温不高于的三天分别为,另外两天分别记为,则在这5天中任意选取2天有,共10个基本事件,其中恰有1天网约订单数不低于210份的有,共6个基本事件,所以所求概率,即恰有1天网约订单数不低于20份的概率为.【点睛】考查线性回归系数的求法以及古典概型求概率的方法,中档题.19、(1)(2)为定值.【解析】

(1)根据题意,得出,从而得出椭圆的标准方程.(2)根据题意设直线方程:,因为直线与椭圆相切,这有一个交点,联立直线与椭圆方程得,则,解得①把和代入,得和,,的表达式,比即可得出为定值.【详解】解:(1)依题意,,,.所以椭圆的标准方程为.(2)为定值.①因为直线分别与直线和直线相交,所以,直线一定存在斜率.②设直线:,由得,由,得.①把代入,得,把代入,得,又因为,所以,,②由①式,得,③把③式代入②式,得,,即为定值.【点睛】本题考查椭圆的定义、方程、和性质,主要考查椭圆方程的运用,考查椭圆的定值问题,考查计算能力和转化思想,是中档题.20、(1)证明见解析;(2)2【解析】

(1)在中,利用勾股定理,证得,又由题设条件,得到,利用线面垂直的判定定理,证得平面,进而得到;(2)设三棱台和三棱柱的高都为上、下底面之间的距离为,根据棱台的体积公式,列出方程求得,得到,即可求解.【详解】(1)由题意,在中,,,所以,可得,因为,可得.又由,,平面,所以平面,因为平面,所以.(2)因为,可得,令,,设三棱台和三棱柱的高都为上、下底面之间的距离为,则,整理得,即,解得,即,又由,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论