![湖南省十四校2025届高考数学四模试卷含解析_第1页](http://file4.renrendoc.com/view14/M03/17/3C/wKhkGWdCFFqASK73AAFsa54OBPM782.jpg)
![湖南省十四校2025届高考数学四模试卷含解析_第2页](http://file4.renrendoc.com/view14/M03/17/3C/wKhkGWdCFFqASK73AAFsa54OBPM7822.jpg)
![湖南省十四校2025届高考数学四模试卷含解析_第3页](http://file4.renrendoc.com/view14/M03/17/3C/wKhkGWdCFFqASK73AAFsa54OBPM7823.jpg)
![湖南省十四校2025届高考数学四模试卷含解析_第4页](http://file4.renrendoc.com/view14/M03/17/3C/wKhkGWdCFFqASK73AAFsa54OBPM7824.jpg)
![湖南省十四校2025届高考数学四模试卷含解析_第5页](http://file4.renrendoc.com/view14/M03/17/3C/wKhkGWdCFFqASK73AAFsa54OBPM7825.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省十四校2025届高考数学四模试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某几何体的三视图如图所示,则此几何体的体积为()A. B.1 C. D.2.如图所示程序框图,若判断框内为“”,则输出()A.2 B.10 C.34 D.983.如图,在中,,且,则()A.1 B. C. D.4.已知复数在复平面内对应的点的坐标为,则下列结论正确的是()A. B.复数的共轭复数是C. D.5.若为纯虚数,则z=()A. B.6i C. D.206.tan570°=()A. B.- C. D.7.已知双曲线(a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线l与双曲线的右支有且只有一个交点,则此双曲线的离心率e的取值范围是()A. B.(1,2), C. D.8.已知数列满足,且成等比数列.若的前n项和为,则的最小值为()A. B. C. D.9.已知向量,则是的()A.充分不必要条件 B.必要不充分条件C.既不充分也不必要条件 D.充要条件10.函数且的图象是()A. B.C. D.11.已知直线y=k(x+1)(k>0)与抛物线C相交于A,B两点,F为C的焦点,若|FA|=2|FB|,则|FA|=()A.1 B.2 C.3 D.412.复数在复平面内对应的点为则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系中,双曲线的一条准线与两条渐近线所围成的三角形的面积为______.14.若,则_________.15.设为数列的前项和,若,,且,,则________.16.已知,为双曲线的左、右焦点,双曲线的渐近线上存在点满足,则的最大值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数,是函数的导数.(1)若,证明在区间上没有零点;(2)在上恒成立,求的取值范围.18.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,直线交曲线于两点,为中点.(1)求曲线的直角坐标方程和点的轨迹的极坐标方程;(2)若,求的值.19.(12分)已知函数(1)当时,求不等式的解集;(2)的图象与两坐标轴的交点分别为,若三角形的面积大于,求参数的取值范围.20.(12分)已知数列的前项和和通项满足.(1)求数列的通项公式;(2)已知数列中,,,求数列的前项和.21.(12分)已知椭圆与x轴负半轴交于,离心率.(1)求椭圆C的方程;(2)设直线与椭圆C交于两点,连接AM,AN并延长交直线x=4于两点,若,直线MN是否恒过定点,如果是,请求出定点坐标,如果不是,请说明理由.22.(10分)已知为等差数列,为等比数列,的前n项和为,满足,,,.(1)求数列和的通项公式;(2)令,数列的前n项和,求.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】该几何体为三棱锥,其直观图如图所示,体积.故选.2、C【解析】
由题意,逐步分析循环中各变量的值的变化情况,即可得解.【详解】由题意运行程序可得:,,,;,,,;,,,;不成立,此时输出.故选:C.【点睛】本题考查了程序框图,只需在理解程序框图的前提下细心计算即可,属于基础题.3、C【解析】
由题可,所以将已知式子中的向量用表示,可得到的关系,再由三点共线,又得到一个关于的关系,从而可求得答案【详解】由,则,即,所以,又共线,则.故选:C【点睛】此题考查的是平面向量基本定理的有关知识,结合图形寻找各向量间的关系,属于中档题.4、D【解析】
首先求得,然后根据复数乘法运算、共轭复数、复数的模、复数除法运算对选项逐一分析,由此确定正确选项.【详解】由题意知复数,则,所以A选项不正确;复数的共轭复数是,所以B选项不正确;,所以C选项不正确;,所以D选项正确.故选:D【点睛】本小题考查复数的几何意义,共轭复数,复数的模,复数的乘法和除法运算等基础知识;考查运算求解能力,推理论证能力,数形结合思想.5、C【解析】
根据复数的乘法运算以及纯虚数的概念,可得结果.【详解】∵为纯虚数,∴且得,此时故选:C.【点睛】本题考查复数的概念与运算,属基础题.6、A【解析】
直接利用诱导公式化简求解即可.【详解】tan570°=tan(360°+210°)=tan210°=tan(180°+30°)=tan30°=.故选:A.【点睛】本题考查三角函数的恒等变换及化简求值,主要考查诱导公式的应用,属于基础题.7、A【解析】
若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率.根据这个结论可以求出双曲线离心率的取值范围.【详解】已知双曲线的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,,离心率,,故选:.【点睛】本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件.8、D【解析】
利用等比中项性质可得等差数列的首项,进而求得,再利用二次函数的性质,可得当或时,取到最小值.【详解】根据题意,可知为等差数列,公差,由成等比数列,可得,∴,解得.∴.根据单调性,可知当或时,取到最小值,最小值为.故选:D.【点睛】本题考查等差数列通项公式、等比中项性质、等差数列前项和的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意当或时同时取到最值.9、A【解析】
向量,,,则,即,或者-1,判断出即可.【详解】解:向量,,,则,即,或者-1,所以是或者的充分不必要条件,故选:A.【点睛】本小题主要考查充分、必要条件的判断,考查向量平行的坐标表示,属于基础题.10、B【解析】
先判断函数的奇偶性,再取特殊值,利用零点存在性定理判断函数零点分布情况,即可得解.【详解】由题可知定义域为,,是偶函数,关于轴对称,排除C,D.又,,在必有零点,排除A.故选:B.【点睛】本题考查了函数图象的判断,考查了函数的性质,属于中档题.11、C【解析】
方法一:设,利用抛物线的定义判断出是的中点,结合等腰三角形的性质求得点的横坐标,根据抛物线的定义求得,进而求得.方法二:设出两点的横坐标,由抛物线的定义,结合求得的关系式,联立直线的方程和抛物线方程,写出韦达定理,由此求得,进而求得.【详解】方法一:由题意得抛物线的准线方程为,直线恒过定点,过分别作于,于,连接,由,则,所以点为的中点,又点是的中点,则,所以,又所以由等腰三角形三线合一得点的横坐标为,所以,所以.方法二:抛物线的准线方程为,直线由题意设两点横坐标分别为,则由抛物线定义得又①②由①②得.故选:C【点睛】本小题主要考查抛物线的定义,考查直线和抛物线的位置关系,属于中档题.12、B【解析】
求得复数,结合复数除法运算,求得的值.【详解】易知,则.故选:B【点睛】本小题主要考查复数及其坐标的对应,考查复数的除法运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
求出双曲线的渐近线方程,求出准线方程,求出三角形的顶点的坐标,然后求解面积.【详解】解:双曲线:双曲线中,,,则双曲线的一条准线方程为,双曲线的渐近线方程为:,可得准线方程与双曲线的两条渐近线所围成的三角形的顶点的坐标,,,,则三角形的面积为.故答案为:【点睛】本题考查双曲线方程的应用,双曲线的简单性质的应用,考查计算能力,属于中档题.14、【解析】
因为,所以.因为,所以,又,所以,所以..15、【解析】
由题可得,解得,所以,,上述两式相减可得,即,因为,所以,即,所以数列是以为首项,为公差的等差数列,所以.16、【解析】
设,由可得,整理得,即点在以为圆心,为半径的圆上.又点到双曲线的渐近线的距离为,所以当双曲线的渐近线与圆相切时,取得最大值,此时,解得.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】
(1)先利用导数的四则运算法则和导数公式求出,再由函数的导数可知,函数在上单调递增,在上单调递减,而,,可知在区间上恒成立,即在区间上没有零点;(2)由题意可将转化为,构造函数,利用导数讨论研究其在上的单调性,由,即可求出的取值范围.【详解】(1)若,则,,设,则,,,故函数是奇函数.当时,,,这时,又函数是奇函数,所以当时,.综上,当时,函数单调递增;当时,函数单调递减.又,,故在区间上恒成立,所以在区间上没有零点.(2),由,所以恒成立,若,则,设,.故当时,,又,所以当时,,满足题意;当时,有,与条件矛盾,舍去;当时,令,则,又,故在区间上有无穷多个零点,设最小的零点为,则当时,,因此在上单调递增.,所以.于是,当时,,得,与条件矛盾.故的取值范围是.【点睛】本题主要考查导数的四则运算法则和导数公式的应用,以及利用导数研究函数的单调性和最值,涉及分类讨论思想和放缩法的应用,难度较大,意在考查学生的数学建模能力,数学运算能力和逻辑推理能力,属于较难题.18、(1),;(2)或【解析】
(1)根据曲线的参数方程消去参数,可得曲线的直角坐标方程,再由,,可得点的轨迹的极坐标方程;(2)将曲线极坐标方程求,与直线极坐标方程联立,消去,得到关于的二次方程,由的几何意义可求出,而(1)可知,然后列方程可求出的值.【详解】(1)曲线的直角坐标方程为,圆的圆心为,设,所以,则由,即为点轨迹的极坐标方程.(2)曲线的极坐标方程为,将与曲线的极坐标方程联立得,,设,所以,,由,即,令,上述方程可化为,解得.由,所以,即或.【点睛】此题考查参数方程与普通方程的互化,极坐标方程与直角坐标方程的互化,利用极坐标求点的轨迹方程,考查运算求解能力,考查数形结合思想,属于中档题.19、(1)(2)【解析】
(1)当时,不等式可化为:,再利用绝对值的意义,分,,讨论求解.(2)根据可得,得到函数的图象与两坐标轴的交点坐标分别为,再利用三角形面积公式由求解.【详解】(1)当时,不等式可化为:①当时,不等式化为,解得:②当时,不等式化为,解得:,③当时,不等式化为解集为,综上,不等式的解集为.(2)由题得,所以函数的图象与两坐标轴的交点坐标分别为,的面积为,由,得(舍),或,所以,参数的取值范围是.【点睛】本题主要考查绝对值不等式的解法和绝对值函数的应用,还考查分类讨论的思想和运算求解的能力,属于中档题.20、(1);(2)【解析】
(1)当时,利用可得,故可利用等比数列的通项公式求出的通项.(2)利用分组求和法可求数列的前项和.【详解】(1)当时,,所以,当时,,①,②所以,即,又因为,故,所以,所以是首项,公比为的等比数列,故.(2)由得:数列为等差数列,公差,,,.【点睛】本题考查数列的通项与求和,注意数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法.21、(1)(2)直线恒过定点,详见解析【解析】
(1)依题意由椭圆的简单性质可求出,即得椭圆C的方程;(2)设直线的方程为:,联立直线的方程与椭圆方程可求得点的坐标,同理可求出点的坐标,根据的坐标可求出直线的方程,将其化简成点斜式,即可求出定点坐标.【详解】(1)由题有,.∴,∴.∴椭圆方程为.(2)设直线的方程为:,则∴或,∴,同理,当时,由有.∴,同理,又∴,当时,∴直线的方程为∴直线恒过定点,当时,此时也过定点..综上:直线恒过定点.【点睛】本题主要考查利用椭圆的简单性质求椭圆的标准方程,以及直线与椭圆的位置关系应用,定点问题的求法等,意在考查学生的逻辑推理能力和数学运算能力,属于难题.22、(1),;(2).【解析】
(1)设的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《集料学习》课件
- 二零二五年度高端美发造型工作室员工聘用协议
- 《影院服务礼仪》课件
- 重难点专题 1-1 函数的对称性与周期性问题【18类题型】(原卷版)-2025届高考数学热点题型归纳与重难点突(新高考专用)
- 《租赁和信托》课件
- 《GL总账模块培训》课件
- 《轮式机械行走系》课件
- 汽车销售代理经销商合作协议
- DB37-T4822-2025燃煤机组掺烧生物质在线监测技术规范
- 幼儿成长故事教育价值征文
- 学校突发事件应急流程
- 2024版第三方代付协议模板
- 陕西省2024年中考语文真题试卷【附答案】
- 2024年吉林省中考语文真题版有答案
- 中国历代政治得失-课件
- 课件:森林的基本概念
- 高速公路养护培训
- 如何在小学语文教学中落实单元语文要素
- 2024年演出经纪人考试必背1000题附答案(黄金题型)
- 2024年知识竞赛-竞彩知识笔试参考题库含答案
- 医院DRG付费知识培训课件
评论
0/150
提交评论