版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省荥阳高中2025届高考数学一模试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的一个焦点与抛物线的焦点重合,则双曲线的离心率为()A. B. C.3 D.42.已知,是椭圆与双曲线的公共焦点,是它们的一个公共点,且,椭圆的离心率为,双曲线的离心率为,若,则的最小值为()A. B. C.8 D.63.国务院发布《关于进一步调整优化结构、提高教育经费使用效益的意见》中提出,要优先落实教育投入.某研究机构统计了年至年国家财政性教育经费投入情况及其在中的占比数据,并将其绘制成下表,由下表可知下列叙述错误的是()A.随着文化教育重视程度的不断提高,国在财政性教育经费的支出持续增长B.年以来,国家财政性教育经费的支出占比例持续年保持在以上C.从年至年,中国的总值最少增加万亿D.从年到年,国家财政性教育经费的支出增长最多的年份是年4.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是()A. B. C. D.5.若直线l不平行于平面α,且l⊄α,则()A.α内所有直线与l异面B.α内只存在有限条直线与l共面C.α内存在唯一的直线与l平行D.α内存在无数条直线与l相交6.已知三棱柱的所有棱长均相等,侧棱平面,过作平面与平行,设平面与平面的交线为,记直线与直线所成锐角分别为,则这三个角的大小关系为()A. B.C. D.7.在平行六面体中,M为与的交点,若,,则与相等的向量是()A. B. C. D.8.的展开式中,含项的系数为()A. B. C. D.9.已知函数,不等式对恒成立,则的取值范围为()A. B. C. D.10.下列四个结论中正确的个数是(1)对于命题使得,则都有;(2)已知,则(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为;(4)“”是“”的充分不必要条件.A.1 B.2 C.3 D.411.己知四棱锥中,四边形为等腰梯形,,,是等边三角形,且;若点在四棱锥的外接球面上运动,记点到平面的距离为,若平面平面,则的最大值为()A. B.C. D.12.已知双曲线的一条渐近线方程为,,分别是双曲线C的左、右焦点,点P在双曲线C上,且,则()A.9 B.5 C.2或9 D.1或5二、填空题:本题共4小题,每小题5分,共20分。13.若函数恒成立,则实数的取值范围是_____.14.在中,角,,的对边分别为,,,若,且,则面积的最大值为________.15.如图,半球内有一内接正四棱锥,该四棱锥的体积为,则该半球的体积为__________.16.如图,在平面四边形中,点,是椭圆短轴的两个端点,点在椭圆上,,记和的面积分别为,,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知二阶矩阵A=abcd,矩阵A属于特征值λ1=-1的一个特征向量为α118.(12分)已知函数,为实数,且.(Ⅰ)当时,求的单调区间和极值;(Ⅱ)求函数在区间,上的值域(其中为自然对数的底数).19.(12分)下表是某公司2018年5~12月份研发费用(百万元)和产品销量(万台)的具体数据:月份56789101112研发费用(百万元)2361021131518产品销量(万台)1122.563.53.54.5(Ⅰ)根据数据可知与之间存在线性相关关系,求出与的线性回归方程(系数精确到0.01);(Ⅱ)该公司制定了如下奖励制度:以(单位:万台)表示日销售,当时,不设奖;当时,每位员工每日奖励200元;当时,每位员工每日奖励300元;当时,每位员工每日奖励400元.现已知该公司某月份日销售(万台)服从正态分布(其中是2018年5-12月产品销售平均数的二十分之一),请你估计每位员工该月(按30天计算)获得奖励金额总数大约多少元.参考数据:,,,,参考公式:相关系数,其回归直线中的,若随机变量服从正态分布,则,.20.(12分)已知函数.(1)求的极值;(2)若,且,证明:.21.(12分)已知函数.(1)解不等式;(2)记函数的最小值为,正实数、满足,求证:.22.(10分)如图,在直角梯形中,,,,为的中点,沿将折起,使得点到点位置,且,为的中点,是上的动点(与点,不重合).(Ⅰ)证明:平面平面垂直;(Ⅱ)是否存在点,使得二面角的余弦值?若存在,确定点位置;若不存在,说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据题意,由抛物线的方程可得其焦点坐标,由此可得双曲线的焦点坐标,由双曲线的几何性质可得,解可得,由离心率公式计算可得答案.【详解】根据题意,抛物线的焦点为,则双曲线的焦点也为,即,则有,解可得,双曲线的离心率.故选:A.【点睛】本题主要考查双曲线、抛物线的标准方程,关键是求出抛物线焦点的坐标,意在考查学生对这些知识的理解掌握水平.2、C【解析】
由椭圆的定义以及双曲线的定义、离心率公式化简,结合基本不等式即可求解.【详解】设椭圆的长半轴长为,双曲线的半实轴长为,半焦距为,则,,设由椭圆的定义以及双曲线的定义可得:,则当且仅当时,取等号.故选:C.【点睛】本题主要考查了椭圆的定义以及双曲线的定义、离心率公式,属于中等题.3、C【解析】
观察图表,判断四个选项是否正确.【详解】由表易知、、项均正确,年中国为万亿元,年中国为万亿元,则从年至年,中国的总值大约增加万亿,故C项错误.【点睛】本题考查统计图表,正确认识图表是解题基础.4、C【解析】
根据程序框图的运行,循环算出当时,结束运行,总结分析即可得出答案.【详解】由题可知,程序框图的运行结果为31,当时,;当时,;当时,;当时,;当时,.此时输出.故选:C.【点睛】本题考查根据程序框图的循环结构,已知输出结果求条件框,属于基础题.5、D【解析】
通过条件判断直线l与平面α相交,于是可以判断ABCD的正误.【详解】根据直线l不平行于平面α,且l⊄α可知直线l与平面α相交,于是ABC错误,故选D.【点睛】本题主要考查直线与平面的位置关系,直线与直线的位置关系,难度不大.6、B【解析】
利用图形作出空间中两直线所成的角,然后利用余弦定理求解即可.【详解】如图,,设为的中点,为的中点,由图可知过且与平行的平面为平面,所以直线即为直线,由题易知,的补角,分别为,设三棱柱的棱长为2,在中,,;在中,,;在中,,,.故选:B【点睛】本题主要考查了空间中两直线所成角的计算,考查了学生的作图,用图能力,体现了学生直观想象的核心素养.7、D【解析】
根据空间向量的线性运算,用作基底表示即可得解.【详解】根据空间向量的线性运算可知因为,,则即,故选:D.【点睛】本题考查了空间向量的线性运算,用基底表示向量,属于基础题.8、B【解析】
在二项展开式的通项公式中,令的幂指数等于,求出的值,即可求得含项的系数.【详解】的展开式通项为,令,得,可得含项的系数为.故选:B.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.9、C【解析】
确定函数为奇函数,且单调递减,不等式转化为,利用双勾函数单调性求最值得到答案.【详解】是奇函数,,易知均为减函数,故且在上单调递减,不等式,即,结合函数的单调性可得,即,设,,故单调递减,故,当,即时取最大值,所以.故选:.【点睛】本题考查了根据函数单调性和奇偶性解不等式,参数分离求最值是解题的关键.10、C【解析】
由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定.【详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题使得,则都有,是错误的;(2)中,已知,正态分布曲线的性质,可知其对称轴的方程为,所以是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为是正确;(4)中,当时,可得成立,当时,只需满足,所以“”是“”成立的充分不必要条件.【点睛】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.11、A【解析】
根据平面平面,四边形为等腰梯形,则球心在过的中点的面的垂线上,又是等边三角形,所以球心也在过的外心面的垂线上,从而找到球心,再根据已知量求解即可.【详解】依题意如图所示:取的中点,则是等腰梯形外接圆的圆心,取是的外心,作平面平面,则是四棱锥的外接球球心,且,设四棱锥的外接球半径为,则,而,所以,故选:A.【点睛】本题考查组合体、球,还考查空间想象能力以及数形结合的思想,属于难题.12、B【解析】
根据渐近线方程求得,再利用双曲线定义即可求得.【详解】由于,所以,又且,故选:B.【点睛】本题考查由渐近线方程求双曲线方程,涉及双曲线的定义,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
若函数恒成立,即,求导得,在三种情况下,分别讨论函数单调性,求出每种情况时的,解关于的不等式,再取并集,即得。【详解】由题意得,只要即可,,当时,令解得,令,解得,单调递减,令,解得,单调递增,故在时,有最小值,,若恒成立,则,解得;当时,恒成立;当时,,单调递增,,不合题意,舍去.综上,实数的取值范围是.故答案为:【点睛】本题考查恒成立条件下,求参数的取值范围,是常考题型。14、【解析】
利用正弦定理将角化边得到,再由余弦定理得到,根据同角三角函数的基本关系表示出,最后利用面积公式得到,由基本不等式求出的取值范围,即可得到面积的最值;【详解】解:∵在中,,∴,∴,∴,∴.∵,即,当且仅当时等号成立,∴,∴面积的最大值为.故答案为:【点睛】本题考查正弦定理、余弦定理解三角形,三角形面积公式的应用,以及基本不等式的应用,属于中档题.15、【解析】
由题意可知半球的半径与正四棱锥的高相等,可得正四棱锥的棱与半径的关系,进而可写出半球的半径与四棱锥体积的关系,进而求得结果.【详解】设所给半球的半径为,则四棱锥的高,则,由四棱锥的体积,半球的体积为:.【方法点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.16、【解析】
依题意易得A、B、C、D四点共圆且圆心在x轴上,然后设出圆心,由圆的方程与椭圆方程联立得到B的横坐标,进一步得到D横坐标,再由计算比值即可.【详解】因为,所以A、B、C、D四点共圆,直径为,又A、C关于x轴对称,所以圆心E在x轴上,设圆心E为,则圆的方程为,联立椭圆方程消y得,解得,故B的横坐标为,又B、D中点是E,所以D的横坐标为,故.故答案为:.【点睛】本题考查椭圆中的四点共圆及三角形面积之比的问题,考查学生基本计算能力及转化与化归思想,本题关键是求出B、D横坐标,是一道有区分度的压轴填空题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、A=【解析】
运用矩阵定义列出方程组求解矩阵A【详解】由特征值、特征向量定义可知,Aα即abc同理可得3a+2b=12,3c+2d=8.解得a=2,b=3,c=2,d=1.因此矩阵【点睛】本题考查了由矩阵特征值和特征向量求矩阵,只需运用定义得出方程组即可求出结果,较为简单18、(Ⅰ)极大值0,没有极小值;函数的递增区间,递减区间,(Ⅱ)见解析【解析】
(Ⅰ)由,令,得增区间为,令,得减区间为,所以有极大值,无极小值;(Ⅱ)由,分,和三种情况,考虑函数在区间上的值域,即可得到本题答案.【详解】当时,,,当时,,函数单调递增,当时,,函数单调递减,故当时,函数取得极大值,没有极小值;函数的增区间为,减区间为,,当时,,在上单调递增,即函数的值域为;当时,,在上单调递减,即函数的值域为;当时,易得时,,在上单调递增,时,,在上单调递减,故当时,函数取得最大值,最小值为,中最小的,当时,,最小值;当,,最小值;综上,当时,函数的值域为,当时,函数的值域,当时,函数的值域为,当时,函数的值域为.【点睛】本题主要考查利用导数求单调区间和极值,以及利用导数研究含参函数在给定区间的值域,考查学生的运算求解能力,体现了分类讨论的数学思想.19、(Ⅰ)(Ⅱ)7839.3元【解析】
(Ⅰ)由题意计算x、y的平均值,进而由公式求出回归系数b和a,即可写出回归直线方程;(Ⅱ)由题意计算平均数μ,得出z~N(μ,),求出日销量z∈[0.13,0.15)、[0.15,0.16)和[0.16,+∞)的概率,计算奖金总数是多少.【详解】(Ⅰ)因为,,因为,所以,所以;(Ⅱ)因为,所以,故即,日销量的概率为,日销量的概率为,日销量的概率为,所以奖金总数大约为:(元).【点睛】本题考查利用最小二乘法求回归直线方程,还考查了利用正态分布计算概率,进而估计总体情况,属于中档题.20、(1)极大值为;极小值为;(2)见解析【解析】
(1)对函数求导,进而可求出单调性,从而可求出函数的极值;(2)构造函数,求导并判断单调性可得,从而在上恒成立,再结合,,可得到,即可证明结论成立.【详解】(1)函数的定义域为,,所以当时,;当时,,则的单调递增区间为和,单调递减区间为.故的极大值为;的极小值为.(2)证明:由(1)知,设函数,则,,则在上恒成立,即在上单调递增,故,又,则,即在上恒成立.因为,所以,又,则,因为,且在上单调递减,所以,故.【点睛】本题考查函数的单调性与极值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人专属授权代理协议(2024年版)版
- 10吃饭有讲究(说课稿)-2023-2024学年道德与法治一年级上册统编版
- 医院骨脊柱科提升服务品质改善就医感受
- 2024煤矿安全生产管理委托合同
- 福建省南平市渭田中学2020年高三物理联考试题含解析
- 2024版乳胶漆购销合同
- 2024戏曲虚拟现实演出技术合作合同范本3篇
- 2024民营医院员工合同
- 2024年股权退出协议:合作社股份转让规定
- 旅游新篇章模板
- 2024-2025学年安徽省六安市金安区三上数学期末调研试题含解析
- ISO 56001-2024《创新管理体系-要求》专业解读与应用实践指导材料之10:“5领导作用-5.4创新文化”(雷泽佳编制-2025B0)
- 《kdigo专家共识:补体系统在肾脏疾病的作用》解读
- 生产调度员岗位面试题及答案(经典版)
- 交通运输安全生产管理规范
- 2024年期货居间业务代理合同范本2篇
- 2024-2025学年上学期杭州初中英语九年级期末试卷
- 网络与信息安全管理组织机构设置及工作职责
- 医院后勤节能降耗工作计划
- 电力行业 电力施工组织设计(施工方案)
- 查对制度 课件
评论
0/150
提交评论