版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
/2021年中考数学九年级复习课时训练:《方程与不等式》解答题专项(一)1.已知当x=﹣1时,代数式2mx3﹣3nx+6的值为17.(1)若关于y的方程2my+n=4﹣ny﹣m的解为y=2,求mn的值;(2)若规定[a]表示不超过a的最大整数,例如[4.3]=4,请在此规定下求的值.2.解方程:(1)4x﹣10=6(x﹣2);(2)﹣=1.3.先阅读下列解题过程,然后解答后面两个问题.解方程:|x+3|=2.解:当x+3≥0时,原方程可化为x+3=2,解得x=﹣1;当x+3<0时,原方程可化为x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1或x=﹣5.①解方程:|3x﹣2|﹣4=0.②当b为何值时,关于x的方程|x﹣2|=b+1,(1)无解;(2)只有一个解;(3)有两个解.4.方程x+2=5与方程ax﹣3=9的解相等,求a的值.5.备小颖5年后上大学的学费10000元,她的父母现在想为她做教育储蓄.他们考虑从下面三种储蓄方式中选择一种(附:中国银行2016年10月最新存款年利率表)(1)直接存一个5年期(2)先存一个3年期,3年后将本息和再转存一个2年期;(3)先存一个2年期,2年后将本息和再转存一个3年期.请按照提供的分析思路,完成以下填空:解:设开始存入的本金为x元.(1)如果按照第一种储蓄方式,5年后本息和要达到10000元,则可列方程.(2)如果按照第二种储蓄方式,3年后本息和是.再将此本息和转存2年后达到10000元,可列方程为.(3)如果按照第三种储蓄方式,2年后的本息和是,再将此本息和转存3年后要达到10000元,可列方程为.(4)根据以上的分析,如果计算出来哪种方式开始存入的资金(填多或少),哪种方式更合算.整存整取定期存款年利率(%)一年1.75二年2.25三年2.75五年2.756.某市城市居民用电收费方式有以下两种:(甲)普通电价:全天0.53元/度;(乙)峰谷电价:峰时(早8:00﹣晚21:00)0.56元/度;谷时(晚21:00﹣早8:00)0.36元/度.估计小明家下月总用电量为200度.(1)若其中峰时电量为50度,则小明家按照哪种方式付电费比较合适?能省多少元?(2)到下月付费时,小明发现那月总用电量为200度,用峰谷电费付费方式比普通电价付费方式省了14元,求那月的峰时电量为多少度?7.已知是二元一次方程2x+y=a的一个解.(1)a=;(2)完成下表,并在所给的直角坐标系中描出表示这些解的点(x,y),如果过其中任意两点作直线,你有什么发现?x013y6208.某汽车专卖店销售A、B两种型号的新能源汽车,上周售出1辆A型车和3辆B型车,销售额96万元,本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各是多少?(2)随着汽车限购限号政策的推行,预计下周起A,B两种型号的汽车价格在原有的基础上均有上涨,若A型汽车价格上涨m%,B型汽车价格上涨3m%,则同时购买一台A型车和一台B型车的费用比涨价前多12%,求m的值.9.已知方程组,甲由于看错了方程①中的a,得到方程组的解为;乙由于看错了方程②中的b,得到方程组的解为;若按正确的a、b计算,求原方程组的解.10.解方程组:.11.已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案(即A、B两种型号的车各租几辆,有几种租车方案).12.已知方程组的解适合x+y=8,求m的值.13.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?14.已知2是关于x的方程x2﹣2mx+3m=0的一个根,而这个方程的两个根恰好是等腰△ABC的两条边长.(1)求m的值;(2)求△ABC的周长.15.(1)计算:(﹣)(+)﹣2(2)解方程x2﹣4x+5=016.解方程:(x﹣1)2﹣2(x﹣1)=15.17.已知关于x的一元二次方程(a+b)x2+2cx+(b﹣a)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.18.已知:平行四边形ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?19.万州区某民营企业生产的甲、乙两种产品,已知2件甲商品的出厂总价与3件乙商品的出厂总价相同,3件甲商品的出厂总价比2件乙商品的出厂总价多150元.(1)求甲、乙商品的出厂单价分别是多少元?(2)为促进万州经济持续健康发展,为商家搭建展示平台,为行业创造交流机会,2019年万州区举办了多场商品展销会.外地一经销商计划购进甲商品200件,购进乙商品的数量是甲的4倍,恰逢展销会期间该企业正在对甲商品进行降价促销活动,甲商品的出厂单价降低了a%,该经销商购进甲的数量比原计划增加了2a%,乙的出厂单价没有改变,该经销商购进乙的数量比原计划减少了,结果该经销商付出的总货款与原计划的总货款恰好相同,求a的值(a>0).20.阅读材料:数学课上,吴老师在求代数式x2﹣4x+5的最小值时,利用公式a2±2ab+b2=(a±b)2,对式子作如下变形:x2﹣4x+5=x2﹣4x+4+1=(x﹣2)2+1,因为(x﹣2)2≥0,所以(x﹣2)2+1≥1,当x=2时,(x﹣2)2+1=1,因此(x﹣2)2+1有最小值1,即x2﹣4x+5的最小值为1.通过阅读,解下列问题:(1)代数式x2+6x+12的最小值为;(2)求代数式﹣x2+2x+9的最大或最小值;(3)试比较代数式3x2﹣2x与2x2+3x﹣7的大小,并说明理由.参考答案1.解:(1)把x=﹣1代入2mx3﹣3nx+6,根据题意得:﹣2m+3n+6=17,则2m﹣3n=﹣11,把y=2代入方程得:4m+n=4﹣2n﹣m,即5m+3n=4,根据题意得:,解得:,则mn=﹣1;(2)∵把x=﹣1代入2mx3﹣3nx+6,根据题意得:﹣2m+3n+6=17,∴2m﹣3n=﹣11,∴=﹣5.5,∵[﹣5.5]=﹣6,∴[]=﹣6.2.解:(1)去括号得,4x﹣10=6x﹣12,移项得,4x﹣6x=﹣12+10,合并同类项得,﹣2x=﹣2,把x的系数化为1得,x=1;(2)去分母得,5(x﹣3)﹣2(4x+1)=10,去括号得,5x﹣15﹣8x﹣2=10,移项得,5x﹣8x=10+15+2,合并同类项得,﹣3x=27,把x的系数化为1得x=﹣9.3.解:①当3x﹣2≥0时,原方程可化为:3x﹣2=4,解得x=2;当3x﹣2<0时,原方程可化为:3x﹣2=﹣4,解得x=﹣.所以原方程的解是x=2或x=﹣;②∵|x﹣2|≥0,∴当b+1<0,即b<﹣1时,方程无解;当b+1=0,即b=﹣1时,方程只有一个解;当b+1>0,即b>﹣1时,方程有两个解4.解:由x+2=5解得x=3∵方程ax﹣3=9的解也是x=3,∴把x=3代入ax﹣3=9得3a﹣3=9.移项,得3a=9+3合并同类项,得3a=12系数化为1,得a=4故a的值为4.5.解:(1)由题意可得,x+2.75%x×5=10000,故答案为:x+2.75%x×5=10000;(2)如果按照第二种储蓄方式,3年后本息和是:x+2.75%x×3,再将此本息和转存2年后达到10000元,可列方程为:(x+2.75%x×3)+2.25%(x+2.75%x×3)×2=10000,故答案为:x+2.75%x×3、(x+2.75%x×3)+2.25%(x+2.75%x×3)×2=10000;(3)如果按照第三种储蓄方式,2年后的本息和是:x+2.25%x×2,再将此本息和转存3年后要达到10000元,可列方程为:(x+2.25%x×2)+2.75%(x+2.25%x×2)×3=10000,故答案为:x+2.25%x×2、(x+2.25%x×2)+2.75%(x+2.25%x×2)×3=10000;(4)根据以上的分析,如果计算出来哪种方式开始存入的资金少,则那种方式更合算,故答案为:少.6.解:(1)按普通电价付费:200×0.53=106元,按峰谷电价付费:50×0.56+150×0.36=82元.所以按峰谷电价付电费合算,能省106﹣82=24元;(2)设那月的峰时电量为x度,根据题意得:0.53×200﹣[0.56x+0.36(200﹣x)]=14,解得x=100.答:那月的峰时电量为100度.7.解:(1)将代入2x+y=a,得:a=4,故答案为:4;(2)完成表格如下:x﹣10123y6420﹣2描点、连线如下:由图可知,如果过其中任意两点作直线,其他点也在这条直线上.8.解:(1)设每辆A型车和B型车的售价分别是x万元、y万元.则,解得.答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)根据题意,得:18×m%+26×3m%=(18+26)×12%,解得:m=5.5,答:m的值为5.5.9.解:将代入②得,﹣12+b=﹣2,b=10;将代入①得,5a+20=15,a=﹣1.故原方程组为,解得.10.解:(1)+(2)得:4x=16,解得:x=4,把x=4代入(1)得:4﹣2y=6,解得:y=﹣1,所以原方程组的解为:11.解:(1)设1辆A型车和1辆B型车都装满货物一次可分别运货x吨,y吨,根据题意得:,解得:.答:1辆A型车和1辆B型车都装满货物一次可分别运货3吨,4吨.(2)由题意可得:3a+4b=31,∴b=.∵a,b均为整数,∴有、和三种情况.故共有三种租车方案,分别为:①A型车1辆,B型车7辆;②A型车5辆,B型车4辆;③A型车9辆,B型车1辆.12.解:,由把②代入①,得3x+5y=2x+3y+2,即x+2y=2③,将方程③与x+y=8组成方程组:,③﹣④,得y=﹣6,把y=﹣6代入④,得x=14,把代入②,得2×14+3×(﹣6)=m.所以m=10.13.解:(1)由题意,得,解得即x的值为1800,y的值为3;(2)设某营业员当月卖服装m件,由题意得,1800+3m≥3100,解得,,∵m只能为正整数,∴m最小为434,即某营业员当月至少要卖434件;(3)设一件甲为a元,一件乙为b元,一件丙为c元,则,将两等式相加得,4a+4b+4c=720,则a+b+c=180,即购买一件甲、一件乙、一件丙共需180元.14.解:(1)把x=2代入方程得4﹣4m+3m=0,解得m=4;(2)当m=4时,原方程变为x2﹣8x+12=0,解得x1=2,x2=6,∵该方程的两个根恰好是等腰△ABC的两条边长,且不存在三边为2,2,6的等腰三角形∴△ABC的腰为6,底边为2,∴△ABC的周长为6+6+2=14.15.解:(1)原式=5﹣3﹣4+1=﹣1;(2)x2﹣4x+5=0,b2﹣4ac=(﹣4)2﹣4×1×5=﹣1<0,所以此方程无实数根.16.解:(x﹣1)2﹣2(x﹣1)﹣15=0,[(x﹣1)﹣5][(x﹣1)+3]=0,(x﹣1)﹣5=0或(x﹣1)+3=0,所以x1=6,x2=﹣2.17.解:(1)△ABC是等腰三角形,理由:当x=﹣1时,(a+b)﹣2c+(b﹣a)=0,∴b=c,∴△ABC是等腰三角形,(2)△ABC是直角三角形,理由:∵方程有两个相等的实数根,∴△=(2c)2﹣4(a+b)(b﹣a)=0,∴a2+c2=b2,∴△ABC是直角三角形;(3)∵△ABC是等边三角形,∴a=b=c,∴原方程可化为:2ax2+2ax=0,即:x2+x=0,∴x(x+1)=0,∴x1=0,x2=﹣1,即:这个一元二次方程的根为x1=0,x2=﹣1.18.解:(1)∵四边形ABCD是菱形,∴AB=AD.又∵AB、AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根,∴△=(﹣m)2﹣4×(﹣)=(m﹣1)2=0,∴m=1,∴当m为1时,四边形ABCD是菱形.当m=1时,原方程为x2﹣x+=0,即(x﹣)2=0,解得:x1=x2=,∴菱形ABCD的边长是.(2)把x=2代入原方程,得:4﹣2m+﹣=0,解得:m=.将m=代入原方程,得:x2﹣x+1=0,∴方程的另一根AD=1÷2=,∴▱ABCD的周长是2×(2+)=5.19.解:(1)设甲商品的出厂单价是x元/件,则乙商品的出厂单价是x元/件,根据题意得:3x﹣2×x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度商标许可使用合同的许可方式3篇
- 维修合同范例学校
- 港式清单对应合同模板
- 二零二四年度干粉砂浆价格指数联动合同2篇
- 加油站加油合同范本
- 洗涤设备租赁合同模板
- 盒纸巾购销合同范例
- 股分提成合同模板
- 旅游服务协议合同范例
- vi甲方合同范例
- 猜猜我有多爱你绘本 (2)
- 儿童通信知识教学(课堂PPT)
- 关于开发建设项目水土保持咨询服务费用计列的指导意见(保监[2005]22号)
- 人机工程评价标准
- 北医三院洁净实验室施工组织设计
- 储气罐日常检查维护保养记录表
- 小学五年级上册美术课件第9课小书签赣美版(16张)ppt课件
- 递等式计算(四年级上)
- 中级按摩师培训课件
- 钢丝绳、吊索具检查表(共3页)
- 文秘专业教学标准
评论
0/150
提交评论