




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
6.3平面向量基本定理及坐标表示【题型归纳目录】题型一:平面向量基本定理的理解题型二:用基底表示向量题型三:平面向量的坐标表示题型四:平面向量加、减运算的坐标表示题型五:平面向量数乘运算的坐标表示题型六:向量共线的判定题型七:利用向量共线的坐标表示求参数题型八:定比分点坐标公式及应用题型九:数量积的坐标运算题型十:平面向量的模题型十一:平面向量的夹角、垂直问题题型十二:平面向量数量积的综合应用【知识点梳理】知识点一:平面向量基本定理1、平面向量基本定理如果是同一平面内两个不共线的向量,那么对于这个平面内任一向量,有且只有一对实数,使,称为的线性组合.①其中叫做表示这一平面内所有向量的基底;②平面内任一向量都可以沿两个不共线向量的方向分解为两个向量的和,并且这种分解是唯一的.这说明如果且,那么.③当基底是两个互相垂直的单位向量时,就建立了平面直角坐标系,因此平面向量基本定理实际上是平面向量坐标表示的基础.知识点诠释:平面向量基本定理的作用:平面向量基本定理是建立向量坐标的基础,它保证了向量与坐标是一一对应的,在应用时,构成两个基底的向量是不共线向量.2、如何使用平面向量基本定理平面向量基本定理反映了平面内任意一个向量可以写成任意两个不共线的向量的线性组合.(1)由平面向量基本定理可知,任一平面直线形图形,都可以表示成某些向量的线性组合,这样在解答几何问题时,就可以先把已知和结论表示为向量的形式,然后通过向量的运算,达到解题的目的.(2)在解具体问题时,要适当地选取基底,使其他向量能够用基底来表示.选择了不共线的两个向量、,平面上的任何一个向量都可以用、唯一表示为=+,这样几何问题就转化为代数问题,转化为只含有、的代数运算.知识点二:平面向量的坐标表示1、正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.知识点诠释:如果基底的两个基向量、互相垂直,则称这个基底为正交基底,在正交基底下分解向量,叫做正交分解,事实上,正交分解是平面向量基本定理的特殊形式.2、平面向量的坐标表示如图,在平面直角坐标系内,分别取与轴、轴方向相同的两个单位向量、作为基底,对于平面上的一个向量,由平面向量基本定理可知,有且只有一对实数,使得=.这样,平面内的任一向量都可由唯一确定,我们把有序数对叫做向量的(直角)坐标,记作=,x叫做在轴上的坐标,叫做在轴上的坐标.把叫做向量的坐标表示.给出了平面向量的直角坐标表示,在平面直角坐标系内,每一个平面向量都可以用一有序数对唯一表示,从而建立了向量与实数的联系,为向量运算数量化、代数化奠定了基础,沟通了数与形的联系.知识点诠释:(1)由向量的坐标定义知,两向量相等的充要条件是它们的坐标相等,即且,其中,.(2)要把点的坐标与向量坐标区别开来.相等的向量的坐标是相同的,但始点、终点的坐标可以不同.比如,若,,则;若,,则,,显然A、B、C、D四点坐标各不相同.(3)在直角坐标系中有双重意义,它既可以表示一个固定的点,又可以表示一个向量.知识点三:平面向量的坐标运算1、平面向量坐标的加法、减法和数乘运算运算坐标语言加法与减法记,,实数与向量的乘积记,则2、如何进行平面向量的坐标运算在进行平面向量的坐标运算时,应先将平面向量用坐标的形式表示出来,再根据向量的直角坐标运算法则进行计算.在求一个向量时,可以首先求出这个向量的起点坐标和终点坐标,再运用终点坐标减去起点坐标得到该向量的坐标.求一个点的坐标,可以转化为求该点相对于坐标原点的位置向量的坐标.但同时注意以下几个问题:(1)点的坐标和向量的坐标是有区别的,平面向量的坐标与该向量的起点、终点坐标有关,只有起点在原点时,平面向量的坐标与终点的坐标才相等.(2)进行平面向量坐标运算时,先要分清向量坐标与向量起点、终点的关系.(3)要注意用坐标求向量的模与用两点间距离公式求有向线段的长度是一样的.(4)要清楚向量的坐标与表示该向量的有向线段的起点、终点的具体位置无关,只与其相对位置有关.知识点四:平面向量平行(共线)的坐标表示1、平面向量平行(共线)的坐标表示设非零向量,则,即,或.知识点诠释:若,则不能表示成因为分母有可能为0.2、三点共线的判断方法判断三点是否共线,先求每两点对应的向量,然后再按两向量共线进行判定,即已知,,若则A,B,C三点共线.知识点五:向量数量积的坐标表示1、已知两个非零向量,,2、设,则或3、如果表示向量的有向线段的起点和终点的坐标分别为、,那么(平面内两点间的距离公式).知识点六:向量在几何中的应用(1)证明线段平行问题,包括相似问题,常用向量平行(共线)的充要条件(2)证明垂直问题,常用垂直的充要条件(3)求夹角问题,利用(4)求线段的长度,可以利用或【典型例题】题型一:平面向量基本定理的理解例1.(2022·全国·高一专题练习)如果是平面内一组不共线的向量,那么下列四组向量中,不能作为平面内所有向量的一组基底的是(
)A.与 B.与C.与 D.与【方法技巧与总结】考查两个向量是否能构成基底,主要看两向量是否不共线.此外,一个平面的基底一旦确定,那么平面上任意一个向量都可以由这个基底唯一线性表示出来.例2.(2022·全国·高一课时练习)若向量与是平面上的两个不平行向量,下列向量不能作为一组基的是(
)A.与 B.与C.与 D.与例3.(2022·黑龙江·哈尔滨市第四中学校高二开学考试)如果表示平面内所有向量的一个基底,那么下列四组向量,不能作为一个基底的是(
)A. B.C. D.题型二:用基底表示向量例4.(2022·四川南充·一模(理))如图,在中,,则(
)A. B.C. D.【方法技巧与总结】平面向量基本定理的作用以及注意点(1)根据平面向量基本定理,任何一个基底都可以表示任意向量.用基底表示向量,实质上是利用三角形法则或平行四边形法则,进行向量的线性运算.(2)基底的选取要灵活,必要时可以建立方程或方程组,通过方程求出要表示的向量.例5.(2022·辽宁·东北育才学校高一阶段练习)如图,中,,,,,,则(
)A. B. C. D.例6.(2022·江苏·高三专题练习)在平行四边形中,,,.对角线AC与BD交于点O,E是线段OD的中点,AE的延长线与CD交于点F.设,,则下列结论错误的是(
)A. B.C. D.变式1.(2022·四川·成都市第二十中学校一模(理))如图,,为以的直径的半圆的两个三等分点,为线段的中点,为的中点,设,,则(
)A. B. C. D.变式2.(2022·安徽·高二开学考试)如图,在中,是的中点,是上一点,且,过点作一条直线与边分别相交于点,若,则(
)A. B. C. D.变式3.(2022·辽宁·东北育才学校高一阶段练习)如图,在梯形中,,且,设.(1)试用和表示;(2)若点满足,且三点共线,求实数的值.变式4.(2022·全国·高一课时练习)如图所示,是△ABC的一条中线,点满足,过点的直线分别与射线,射线交于,两点.(1)若,求的值;(2)设,,,,求的值;变式5.(2022·安徽·池州市第一中学高一阶段练习)如图,在中,,,AD与BC交于点M,设,.(1)若,求x及y;(2)在线段AC上取一点E,在线段BD上取一点F,使EF过M点,设,,求的最小值.题型三:平面向量的坐标表示例7.(2022·河南·郑州外国语学校高一期中)如果用,分别表示x轴和y轴正方向上的单位向量,且,则可以表示为(
)A. B. C. D.【方法技巧与总结】在表示点、向量的坐标时,可利用向量的相等、加减法运算等求坐标,也可以利用向量、点的坐标定义求坐标.例8.(2022·全国·高一专题练习)在平面直角坐标系xOy中,向量、、的方向如图所示,且、、,分别计算出它们的坐标.例9.(2022·广东·高二学业考试)已知点,,则(
)A. B. C. D.变式6.(2022·江西·临川一中高一期中)已知,,点P是线段MN上的点,且,则P点的坐标为(
)A. B. C. D.题型四:平面向量加、减运算的坐标表示例10.(2022·黑龙江·齐齐哈尔三立高级中学高一阶段练习)(1)已知向量,,,求;(2)化简:.【方法技巧与总结】平面向量坐标运算的技巧(1)若已知向量的坐标,则直接应用两个向量和、差的运算法则进行.(2)若已知有向线段两端点的坐标,则可先求出向量的坐标,然后再进行向量的坐标运算.例11.(2022·湖北武汉·高一期末)已知向量在正方形网格中的位置如图所示,用基底表示,则(
)A. B.C. D.题型五:平面向量数乘运算的坐标表示例12.(2022·广东·韶关市永翔实验中学高一阶段练习)已知向量,,.(1)求;(2)求满足的实数,;【方法技巧与总结】平面向量坐标运算的技巧(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进行.(2)若已知有向线段两端点的坐标,则可先求出向量的坐标,然后再进行向量的坐标运算.(3)向量的线性坐标运算可完全类比数的运算进行.例13.(2022·全国·高一专题练习)已知A(-2,4),B(3,-1),C(-3,-4).设.(1)求;(2)求满足的实数m,n的值.例14.(2022·全国·高一课时练习)已知点及.(1)当t为何值时,点P在x轴上?点P在y轴上?点P在第二象限?(2)O,A,B,P四点能否构成平行四边形?若能,求出相应的t值;若不能,请说明理由.题型六:向量共线的判定例15.(2022·江苏·镇江市实验高级中学高一期中)下列各组的两个向量,共线的是(
)A., B.,C., D.,【方法技巧与总结】向量共线的判定应充分利用向量共线定理或向量共线的坐标表示进行判断,特别是利用向量共线的坐标表示进行判断时,要注意坐标之间的搭配.例16.(2022·北京·清华附中朝阳学校高一阶段练习)已知向量,,那么与共线的一个向量是(
)A.(6,4) B.(4,6) C.(0,4) D.(1,6)例17.(2022·全国·高一课时练习)已知,若,,(1)求点的坐标及向量的坐标;(2)求证:.变式7.(2022·全国·高一课时练习)已知点A(1,1),B(1,3),C(1,5),D(2,7),向量与平行吗?直线AB平行于直线CD吗?变式8.(2022·安徽宣城·高一阶段练习)已知,,,且,.(1)求点E,F的坐标;(2)求证:.变式9.(2022·吉林·四平市第一高级中学高三阶段练习)如图,在中,已知.(1)用向量分别表示与;(2)证明:三点共线.变式10.(2022·全国·高一单元测试)如图,在中,是的中点,是线段上靠近点的三等分点,设,.(1)用向量与表示向量,;(2)若,求证:三点共线.变式11.(2022·全国·高一课时练习)如图,已知直角梯形中,,过点C作于点E,M为的中点.求证:(1);(2)D,M,B三点共线.题型七:利用向量共线的坐标表示求参数例18.(2022·上海市甘泉外国语中学高一期末)已知向量,且,则_____.【方法技巧与总结】利用向量平行的条件处理求值问题的思路(1)利用向量共线定理列方程组求解.(2)利用向量平行的坐标表达式直接求解.提醒:当两向量中存在零向量时,无法利用坐标表示求值.例19.(2022·四川省岳池中学高三阶段练习(理))已知,,向量,,则当时,的最小值为_____.例20.(2022·湖北·仙桃市田家炳实验高级中学高三阶段练习)已知向量.(1)求;(2)求满足的实数和的值;(3)若,求实数k的值.变式12.(2022·河南濮阳·高一期中)已知向量.(1)求;(2)若,求实数的值;(3)若,求实数的值.变式13.(2022·河北·魏县第五中学高一期中)已知(1)当k为何值时,与共线?(2)若,且A,B,C三点共线,求m的值.变式14.(2022·全国·高一课时练习)已知点,试用向量的方法求AC与BD的交点坐标.变式15.(2022·全国·高一专题练习)设,是正交单位向量,如果,,,若,,三点在一条直线上,且,求,的值.变式16.(2022·全国·高一课时练习)设梯形的其中3个顶点的坐标分别为,且,,求点C的坐标.题型八:定比分点坐标公式及应用例21.(2022·山西运城·高一期中)已知,,点P是线段MN的一个三等分点且靠近点M,则点P的坐标为______.【方法技巧与总结】用有向线段的定比分点坐标公式,可以求解有向线段的定比分点坐标及定点分有向线段所成的比.事实上用这个公式,还可巧妙地用于解决其它一些问题.如用得好,会使解题过程显得别具一格,简捷明快,充分展现我们思维的独创性.定比分点公式也是判定或证明两向量是否共线、平行的有效方法.例22.(2022·全国·高一专题练习)如图,已知A(-2,1),B(1,3).(1)求线段AB的中点M的坐标;(2)若点P是线段AB的一个三等分点,求点P的坐标.例23.(2022·湖北·宜昌市夷陵中学高一期中)已知在平面直角坐标系中,点,当P是线段靠近的一个四等分点时,点P的坐标为__________.变式17.(2022·湖南岳阳·高一期末)已知,,点P在线段AB的延长线上,且,则点P的坐标为___________.变式18.(2022·上海市金山中学高二期末)已知三点、、在一条直线上,点,,且,则点的坐标为______.题型九:数量积的坐标运算例24.(2022·吉林·四平市第一高级中学高三阶段练习(文))已知向量,,,若,则______.【方法技巧与总结】进行数量积运算时,要正确使用公式,并能灵活运用以下几个关系.例25.(2022·江苏·滨海县五汛中学高一阶段练习)在平行四边形中,为一条对角线,若,.(1);(2).例26.(2022·上海·华东师范大学附属东昌中学高一期末)已知向量,,则向量在方向上的数量投影为___________.变式19.(2022·北京大兴精华学校高三阶段练习)如图,四边形是边长为4的正方形,若,且为的中点,则______.变式20.(2022·上海·格致中学高二阶段练习)若向量与向量的夹角为钝角,则实数的取值范围是_______.变式21.(2022·上海市曹杨中学高一期末)已知向量,则在方向上的投影向量是_____.变式22.(2022·黑龙江·鹤岗一中高三阶段练习)已知向量,,,则_________.题型十:平面向量的模例27.(2022·青海·湟川中学一模(理))已知,,则______.【方法技巧与总结】求向量的模的常见思路及方法(1)求模问题一般转化为求模的平方,即,求模时,勿忘记开方.(2)或,此性质可用来求向量的模,可以实现实数运算与向量运算的相互转化.例28.(2022·吉林·四平市第一高级中学高三阶段练习)已知向量.(1)当时,求;(2)当最小时,求的值.例29.(2022·陕西汉中·一模(理))已知向量,若,则___________.变式23.(2022·安徽·阜阳师范大学附属中学高三阶段练习)已知向量,则实数__________.变式24.(2022·广西·灵川县潭下中学高三阶段练习(文))已知平面向量,,,若,则______.题型十一:平面向量的夹角、垂直问题【方法技巧与总结】解决向量夹角问题的方法及注意事项(1)求解方法:由直接求出.(2)注意事项:利用三角函数值求的值时,应注意角的取值范围是.利用判断的值时,要注意时,有两种情况:一是是钝角,二是为;时,也有两种情况:一是是锐角,二是为.例30.(2022·湖南·邵阳市第二中学高二开学考试)已知向量,.(1)当时,求;(2)当,,求向量与的夹角.例31.(2022·上海中学东校高一期末)已知向量,.(1)求;(2)若向量与互相垂直,求的值.例32.(2022·全国·高二专题练习)已知向量,.(1)求;(2)已知,且,求向量与向量的夹角.变式25.(2022·陕西·礼泉县第二中学高三阶段练习(理))已知平面向量,满足,,其中.(1)若,求实数m的值.(2)若,若与夹角的余弦值.变式26.(2022·全国·高二课时练习)已知(1)求;(2)设的夹角为,求的值;(3)若向量与互相垂直,求的值.变式27.(2022·黑龙江·哈尔滨工业大学附属中学校高一期末)已知,,,,且.(1)求的值;(2)求向量与向量夹角的余弦.变式28.(2022·山东·新泰市第一中学北校高三期中)已知平面向量,,.(1)若,求;(2)若与的夹角为锐角,求x的取值范围.题型十二:平面向量数量积的综合应用例33.(2022·江苏·南京田家炳高级中学高三期中)已知是腰长为1的等腰直角三角形,角为直角,点为平面上的一点,则的最小值为_________.【方法技巧与总结】坐标法例34.(2022·山东·高一阶段练习)平面内向量(其中O为坐标原点),点P是直线OC上的一个动点.(1)若,求的坐标.(2)已知BC中点为D,当取最小值时,若AD与CP相交于点M,求与的夹角的余弦值.例35.(2022·山西·晋城市第一中学校高三阶段练习)如图,在四边形中,,且是线段上的动点,且,则的最小值为__________.变式29.(2022·广东广州·高一期末)如图,在中,,点P为边BC上的一动点,则的最小值为___________.变式30.(2022·全国·高三专题练习)如图,已知正方形ABCD的边长为2,点E为AB的中点.以A为圆心,AE为半径,作圆弧交AD于点F,若P为劣弧EF上的动点,则的最小值为__________.变式31.(2022·贵州遵义·高一期末)等腰中,,,点在上,则的最大值为______.变式32.(2022·吉林·长春十一高高一阶段练习)已知正三角形ABC的边长为2,点P在边BC上,则的最大值为___________.【同步练习】一、单选题1.(2022·四川·绵阳市开元中学高一期末(文))在中,点D在BC边上,且.设,,则可用基底,表示为(
)A. B.C. D.2.(2022·宁夏·贺兰县景博中学高三阶段练习(文))已知平面向量,在方向上的投影为,则(
)A. B. C. D.3.(2022·甘肃·高台县第一中学高三阶段练习(文))在矩形中,,,若点、分别是,的中点,则(
)A. B. C. D.4.(2022·福建·高三阶段练习)已知向量,满足,,且,则向量,夹角的余弦值为(
)A. B. C. D.5.(2022·辽宁·本溪高中高三阶段练习)已知向量,,若与的夹角是锐角,则实数的取值范围为(
)A. B.C. D.6.(2022·宁夏·银川一中高三阶段练习(文))如图所示的图形中,每一个小正方形的边长均为1,则(
)A.0 B. C. D.17.(2022·吉林·东北师大附中高三阶段练习)已知△ABC中,,,,,,则(
)A.4 B.12 C.1 D.68.(2022·山东·高三阶段练习)若点是所在平面上一点,且是直线上一点,,则的最小值是(
).A.2 B.1C. D.二、多选题9.(2022·全国·模拟预测)已知向量,,,若(m,),则可能是(
)A. B. C. D.10.(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论