版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题10.3空间中点线面的位置关系(精讲精析篇)一、核心素养1.通过考查空间线面关系,凸显逻辑推理、直观想象的核心素养.2.通过考查空间角的计算,凸显数学运算、直观想象及逻辑推理的核心素养.二、考试要求1.了解平面的含义,理解空间点、直线、平面位置关系的定义,掌握公理、判定定理和性质定理;2.了解两点间距离、点到平面的距离的含义.3.理解两条异面直线所成角、直线与平面所成角、二面角的概念.4.掌握平行与垂直的公理、判定定理和性质定理.三、主干知识梳理(一)平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内).(2)公理2:经过不在同一条直线上的三点,有且只有一个平面(即可以确定一个平面).(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.(二)空间两直线的位置关系直线与直线的位置关系的分类共面直线平行相交异面直线:不同在任何一个平面内直线与平面的位置关系有平行、相交、在平面内三种情况.平面与平面的位置关系有平行、相交两种情况.平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.(三)异面直线所成的角异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角或直角叫作异面直线a,b所成的角(或夹角).②范围:.异面直线的判定方法:判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线;反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.(四)空间平行关系1.直线与平面平行的判定与性质判定性质定义定理图形条件a∩α=∅a⊂α,b⊄α,a∥ba∥αa∥α,a⊂β,α∩β=b结论a∥αb∥αa∩α=∅a∥b2.面面平行的判定与性质判定性质定义定理图形条件α∩β=∅a⊂β,b⊂β,a∩b=P,a∥α,b∥αα∥β,α∩γ=a,β∩γ=bα∥β,a⊂β结论α∥βα∥βa∥ba∥α3.判断或证明线面平行的常用方法:利用线面平行的定义,一般用反证法;利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;)利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β). (五)空间垂直关系1.定义:如果一条直线和一个平面内的任何一条直线都垂直,那么称这条直线和这个平面垂直.2.定理:文字语言图形语言符号语言判定定理如果一条直线和一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.eq\b\lc\\rc\}(\a\vs4\al\co1(aα,bα,l⊥a,l⊥b,a∩b=A))⇒l⊥α性质定理如果两条直线同垂直于一个平面,那么这两条直线平行.eq\b\lc\\rc\}(\a\vs4\al\co1(a⊥α,b⊥α))⇒a∥b3.定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.4.定理:文字语言图形语言符号语言判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.eq\b\lc\\rc\}(\a\vs4\al\co1(ABβ,AB⊥α))⇒β⊥α性质定理如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.eq\b\lc\\rc\}(\a\vs4\al\co1(α⊥β,α∩β=MN,ABβ,AB⊥MN))⇒AB⊥α(六)直线与平面所成的角1.直线和平面所成角的求法:如图所示,设直线l的方向向量为e,平面α的法向量为n,直线l与平面α所成的角为φ,两向量e与n的夹角为θ,则有sinφ=|cosθ|=eq\f(|e·n|,|e||n|).(七)二面角1.求二面角的大小(1)如图1,AB、CD是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=〈,〉.(2)如图2、3,分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小(或).一、命题规律(1)以几何体为载体,考查点线面的位置关系,以及异面直线所成角、线面角等,与平行关系、垂直关系等相结合考查的情况.(2)判断线线、线面、面面的位置关系.(3)平面的基本性质,点、直线、平面之间的位置关系是高考试题主要考查知识点,题型多为选择题或填空题,少有在大题中间接考查.平面的基本性质是立体几何的基础,而两条异面直线所成的角、线面角、二面角和距离是高考热点.(4)空间中的平行、垂直关系在高考命题中,主要与平面问题中的平行、简单几何体的结构特征等问题相结合,综合直线和平面,以及简单几何体的内容于一体,经常是以简单几何体作为载体,以解答题形式呈现是主要命题方式,作为解答题的一问,通过对图形或几何体的认识,考查线面、面面平行或垂直的判定与性质,进一步考查角的计算,考查转化思想、空间想象能力、逻辑思维能力及运算能力.二、真题展示1.(2021·全国·高考真题(理))在正方体中,P为的中点,则直线与所成的角为()A. B. C. D.2.(2021·浙江·高考真题)如图已知正方体,M,N分别是,的中点,则()A.直线与直线垂直,直线平面B.直线与直线平行,直线平面C.直线与直线相交,直线平面D.直线与直线异面,直线平面考点01平面的基本性质及应用【典例1】(2021·全国·高一课时练习)下列叙述中,正确的是().A.因为,,所以B.因为,,所以C.因为,,,所以D.因为,,所以【典例2】如图,在空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.(1)求证:E,F,G,H四点共面;(2)设EG与FH交于点P,求证:P,A,C三点共线.【方法技巧】1.证明点共线问题的常用方法公理法:先找出两个平面,然后证明这些点都是这两个平面的公共点,再根据公理3证明这些点都在交线上同一法:选择其中两点确定一条直线,然后证明其余点也在该直线上.2.证明线共点问题的方法证明若干线共点的基本思路是先找出两条直线的交点,再证明其他直线都经过该点.而证明直线过该点的方法是证明点是以该直线为交线的两个平面的公共点.3.证明点、直线共面问题的常用方法纳入平面法:先确定一个平面,再证明有关点、线在此平面内辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.考点02空间两直线的位置关系【典例3】(2021·全国·高一课时练习)若a,b为两条异面直线,,为两个平面,,,,则下列结论中正确的是()A.l至少与a,b中一条相交B.l至多与a,b中一条相交C.l至少与a,b中一条平行D.l必与a,b中一条相交,与另一条平行【总结提升】判断空间两直线位置关系的思路方法(1)判断空间两直线的位置关系一般可借助正方体模型,以正方体为主线直观感知并准确判断.(2)异面直线的判定方法①反证法:先假设两条直线不是异面直线,即两条直线平行或相交,由假设的条件出发,经过严格的推理,导出矛盾,从而否定假设,肯定两条直线异面.②定理法:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.考点03与线、面平行相关命题的判定【典例4】(2021·山东·高考真题)已知,表示平面,,表示直线,以下命题中正确的选项是()A.假设,,那么B.假设,,,那么C.假设,,那么D.假设,,,,那么【典例5】(2019·全国高考真题(理))设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面【总结提升】直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件.(2)结合题意构造或绘制图形,结合图形作出判断.(3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等.考点04直线与平面平行的判定与性质
【典例6】(2021·全国·高一课时练习)如图,点A,B,C,M,N为正方体的顶点或所在棱的中点,则下列各图中,不满足直线平面ABC的是()A. B.C. D.【总结提升】证明线面平行的常用方法与思路(1)证明直线与平面平行的关键是设法在平面内找到一条与已知直线平行的直线,解题的思路是利用几何体的特征,合理利用中位线定理、线面平行的性质,或者构造平行四边形、寻找比例式证明两直线平行.(2)应用线面平行性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.热考点05平面与平面平行的判定与性质【典例7】(2015·北京高考真题(理))设,是两个不同的平面,是直线且.“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【总结提升】1.证明两个平面平行的方法有:①用定义,此类题目常用反证法来完成证明;②用判定定理或推论(即“线线平行⇒面面平行”),通过线面平行来完成证明;③根据“垂直于同一条直线的两个平面平行”这一性质进行证明;④借助“传递性”来完成.面面平行问题常转化为线面平行,而线面平行又可转化为线线平行,需要注意转化思想的应用.2.面面平行的应用(1)两平面平行,构造与之相交的第三个平面,可得交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行,可用于证明线面平行.【易错提醒】1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.2.线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.3.解题中注意符号语言的规范应用.考点06直线与平面垂直的判定与性质【典例8】【多选题】(2021·全国·高考真题)如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点.则满足的是()A. B.C. D.【总结提升】证明线面垂直的常用方法及关键(1)证明直线和平面垂直的常用方法:①判定定理;②垂直于平面的传递性(a∥b,a⊥α⇒b⊥α);③面面平行的性质(a⊥α,α∥β⇒a⊥β);④面面垂直的性质.(2)证明线面垂直的关键是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.考点07平面与平面垂直的判定与性质【典例9】(2021·全国·高考真题(文))如图,四棱锥的底面是矩形,底面,M为的中点,且.(1)证明:平面平面;(2)若,求四棱锥的体积.【总结提升】1.在垂直关系的证明中,线线垂直是问题的核心,可以根据已知的平面图形通过计算的方式(如勾股定理)证明线线垂直,也可以根据已知的垂直关系证明线线垂直.2.垂直关系的转化:3.判定面面垂直的方法①面面垂直的定义;②面面垂直的判定定理(a⊥β,a⊂α⇒α⊥β).4.证面面垂直的思路(1)关键是考虑证哪条线垂直哪个面.这必须结合条件中各种垂直关系充分发挥空间想象综合考虑.(2)条件中告诉我们某种位置关系,就要联系到相应的性质定理,如已知两平面互相垂直,我们就要联系到两平面互相垂直的性质定理.考点08异面直线所成的角【典例10】(2021·全国·高考真题(理))在正方体中,P为的中点,则直线与所成的角为()A. B. C. D.【规律方法】求异面直线所成的角常采用“平移线段法”,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角通常放在三角形中进行.平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围.考点09直线与平面所成角【典例11】(2020·山东·高考真题)已知点,分别是正方形的边,的中点.现将四边形沿折起,使二面角为直二面角,如图所示.(1)若点,分别是,的中点,求证:平面;(2)求直线与平面所成角的正弦值.【总结提升】1.利用几何法:原则上先利用图形“找线面角”或者遵循“一做二证三计算”.2.利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角(钝角时取其补角),取其余角就是斜线和平面所成的角.考点10二面角【典例12】(2021·全国·高考真题)如图,在三棱锥中,平面平面,,为的中点.(1)证明:;(2)若是边长为1的等边三角形,点在棱上,,且二面角的大小为,求三棱锥的体积.【总结提升】1.利用几何法:原则上先利用图形“找平面角”或者遵循“一做二证三计算”.2.(1)求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.(2)用平面的法向量求二面角时,二面角的大小与两平面法向量的夹角有相等和互补两种情况.巩固提升1.(2020·全国·高一课时练习)已知直线l和平面α,若l∥α,P∈α,则过点P且平行于l的直线()A.只有一条,不在平面α内B.只有一条,且在平面α内C.有无数条,一定在平面α内D.有无数条,不一定在平面α内2.(2020·陕西·西安市铁一中学高三月考(理))已知平面与平面交于直线,且直线,直线,且直线不重合,则下列命题错误的是()A.若,且与不垂直,则B.若,则C.若,且与不平行,则D.若,则3.(2021·江苏省镇江中学高一月考)在长方体中,,,,直线与平面所成的角是()A.45° B.90°C.正切值为2 D.正切值为4.(2021·江西高一期末(理))如图,在直三棱柱中,,,则直线与所成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 递增提成合同范本
- 北京工业大学《羽毛球》2022-2023学年第一学期期末试卷
- 医疗器械销售合同模板3篇
- 二零二四年度食品出口加工厂建设合同
- 北京工业大学《环境化学》2022-2023学年第一学期期末试卷
- 北京工业大学《创新创业实践》2022-2023学年第一学期期末试卷
- 二零二四年度住宅小区共有部分管理合同
- 赊销支付合同范本
- 北华大学《新闻采访与写作》2021-2022学年第一学期期末试卷
- 2024年度电梯前室装修施工合同
- 药品经营与管理职业生涯规划
- JCT 929-2023 叶蜡石 (正式版)
- 医院骨科专病数据库建设需求
- 贷款营销具体措施和方法
- 五年级上册数学试题-第四单元-多边形的面积-测试卷-北师大版(含答案)
- 血小板减少健康宣教课件
- 汤显祖《牡丹亭·游园》品读课件
- 高中化学学法指导
- 2024届高考语文复习:小说叙述特色专题复习 课件
- 护士进修汇报感染性疾病的预防与处理
- 2024年中煤集团西南分公司招聘笔试参考题库附带答案详解
评论
0/150
提交评论