版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省临沂市兰山区临沂一中2025届高三3月份模拟考试数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设i为虚数单位,若复数,则复数z等于()A. B. C. D.02.已知双曲线:的左右焦点分别为,,为双曲线上一点,为双曲线C渐近线上一点,,均位于第一象限,且,,则双曲线的离心率为()A. B. C. D.3.已知三棱锥中,为的中点,平面,,,则有下列四个结论:①若为的外心,则;②若为等边三角形,则;③当时,与平面所成的角的范围为;④当时,为平面内一动点,若OM∥平面,则在内轨迹的长度为1.其中正确的个数是().A.1 B.1 C.3 D.44.已知全集,集合,,则阴影部分表示的集合是()A. B. C. D.5.设全集,集合,,则集合()A. B. C. D.6.已知,如图是求的近似值的一个程序框图,则图中空白框中应填入A. B.C. D.7.已知双曲线的一条渐近线为,圆与相切于点,若的面积为,则双曲线的离心率为()A. B. C. D.8.设,则()A. B. C. D.9.二项式的展开式中只有第六项的二项式系数最大,则展开式中的常数项是()A.180 B.90 C.45 D.36010.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为()A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺11.已知椭圆内有一条以点为中点的弦,则直线的方程为()A. B.C. D.12.某工厂利用随机数表示对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,……,599,600.从中抽取60个样本,下图提供随机数表的第4行到第6行:若从表中第6行第6列开始向右读取数据,则得到的第6个样本编号是()A.324 B.522 C.535 D.578二、填空题:本题共4小题,每小题5分,共20分。13.某校开展“我身边的榜样”评选活动,现对3名候选人甲、乙、丙进行不记名投票,投票要求详见选票.这3名候选人的得票数(不考虑是否有效)分别为总票数的88%,75%,46%,则本次投票的有效率(有效票数与总票数的比值)最高可能为百分之________.“我身边的榜样”评选选票候选人符号注:1.同意画“○”,不同意画“×”.2.每张选票“○”的个数不超过2时才为有效票.甲乙丙14.甲、乙两人同时参加公务员考试,甲笔试、面试通过的概率分别为和;乙笔试、面试通过的概率分别为和.若笔试面试都通过才被录取,且甲、乙录取与否相互独立,则该次考试只有一人被录取的概率是__________.15.已知(2x-1)7=ao+a1x+a2x2+…+a7x7,则a2=____.16.若,i为虚数单位,则正实数的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的中心在坐标原点,其短半轴长为,一个焦点坐标为,点在椭圆上,点在直线上的点,且.证明:直线与圆相切;求面积的最小值.18.(12分)已知函数.(1)讨论函数单调性;(2)当时,求证:.19.(12分)车工刘师傅利用数控车床为某公司加工一种高科技易损零件,对之前加工的100个零件的加工时间进行统计,结果如下:加工1个零件用时(分钟)20253035频数(个)15304015以加工这100个零件用时的频率代替概率.(1)求的分布列与数学期望;(2)刘师傅准备给几个徒弟做一个加工该零件的讲座,用时40分钟,另外他打算在讲座前、讲座后各加工1个该零件作示范.求刘师傅讲座及加工2个零件作示范的总时间不超过100分钟的概率.20.(12分)随着改革开放的不断深入,祖国不断富强,人民的生活水平逐步提高,为了进一步改善民生,2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)收入个税起征点专项附加扣除;(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用等.其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元②子女教育费用:每个子女每月扣除1000元.新个税政策的税率表部分内容如下:级数一级二级三级四级每月应纳税所得额(含税)不超过3000元的部分超过3000元至12000元的部分超过12000元至25000元的部分超过25000元至35000元的部分税率3102025(1)现有李某月收入29600元,膝下有一名子女,需要赡养老人,除此之外,无其它专项附加扣除.请问李某月应缴纳的个税金额为多少?(2)为研究月薪为20000元的群体的纳税情况,现收集了某城市500名的公司白领的相关资料,通过整理资料可知,有一个孩子的有400人,没有孩子的有100人,有一个孩子的人中有300人需要赡养老人,没有孩子的人中有50人需要赡养老人,并且他们均不符合其它专项附加扣除(受统计的500人中,任何两人均不在一个家庭).若他们的月收入均为20000元,依据样本估计总体的思想,试估计在新个税政策下这类人群缴纳个税金额的分布列与期望.21.(12分)为了保障全国第四次经济普查顺利进行,国家统计局从东部选择江苏,从中部选择河北、湖北,从西部选择宁夏,从直辖市中选择重庆作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区,在普查过程中首先要进行宣传培训,然后确定对象,最后入户登记,由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验,在某普查小区,共有50家企事业单位,150家个体经营户,普查情况如下表所示:普查对象类别顺利不顺利合计企事业单位401050个体经营户10050150合计14060200(1)写出选择5个国家综合试点地区采用的抽样方法;(2)根据列联表判断是否有的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”;(3)以该小区的个体经营户为样本,频率作为概率,从全国个体经营户中随机选择3家作为普查对象,入户登记顺利的对象数记为,写出的分布列,并求的期望值.附:0.100.0100.0012.7066.63510.82822.(10分)已知分别是内角的对边,满足(1)求内角的大小(2)已知,设点是外一点,且,求平面四边形面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据复数除法的运算法则,即可求解.【详解】.故选:B.【点睛】本题考查复数的代数运算,属于基础题.2、D【解析】由双曲线的方程的左右焦点分别为,为双曲线上的一点,为双曲线的渐近线上的一点,且都位于第一象限,且,可知为的三等分点,且,点在直线上,并且,则,,设,则,解得,即,代入双曲线的方程可得,解得,故选D.点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).3、C【解析】
由线面垂直的性质,结合勾股定理可判断①正确;反证法由线面垂直的判断和性质可判断②错误;由线面角的定义和转化为三棱锥的体积,求得C到平面PAB的距离的范围,可判断③正确;由面面平行的性质定理可得线面平行,可得④正确.【详解】画出图形:若为的外心,则,平面,可得,即,①正确;若为等边三角形,,又可得平面,即,由可得,矛盾,②错误;若,设与平面所成角为可得,设到平面的距离为由可得即有,当且仅当取等号.可得的最大值为,即的范围为,③正确;取中点,的中点,连接由中位线定理可得平面平面可得在线段上,而,可得④正确;所以正确的是:①③④故选:C【点睛】此题考查立体几何中与点、线、面位置关系有关的命题的真假判断,处理这类问题,可以用已知的定理或性质来证明,也可以用反证法来说明命题的不成立.属于一般性题目.4、D【解析】
先求出集合N的补集,再求出集合M与的交集,即为所求阴影部分表示的集合.【详解】由,,可得或,又所以.故选:D.【点睛】本题考查了韦恩图表示集合,集合的交集和补集的运算,属于基础题.5、C【解析】∵集合,,∴点睛:本题是道易错题,看清所问问题求并集而不是交集.6、C【解析】
由于中正项与负项交替出现,根据可排除选项A、B;执行第一次循环:,①若图中空白框中填入,则,②若图中空白框中填入,则,此时不成立,;执行第二次循环:由①②均可得,③若图中空白框中填入,则,④若图中空白框中填入,则,此时不成立,;执行第三次循环:由③可得,符合题意,由④可得,不符合题意,所以图中空白框中应填入,故选C.7、D【解析】
由圆与相切可知,圆心到的距离为2,即.又,由此求出的值,利用离心率公式,求出e.【详解】由题意得,,,.故选:D.【点睛】本题考查了双曲线的几何性质,直线与圆相切的性质,离心率的求法,属于中档题.8、D【解析】
结合指数函数及对数函数的单调性,可判断出,,,即可选出答案.【详解】由,即,又,即,,即,所以.故选:D.【点睛】本题考查了几个数的大小比较,考查了指数函数与对数函数的单调性的应用,属于基础题.9、A【解析】试题分析:因为的展开式中只有第六项的二项式系数最大,所以,,令,则,.考点:1.二项式定理;2.组合数的计算.10、A【解析】由题意,将楔体分割为三棱柱与两个四棱锥的组合体,作出几何体的直观图如图所示:
沿上棱两端向底面作垂面,且使垂面与上棱垂直,
则将几何体分成两个四棱锥和1个直三棱柱,
则三棱柱的体积V1四棱锥的体积V2=13×1×3×2=2【点睛】本题考查三视图及几何体体积的计算,其中正确还原几何体,利用方格数据分割与计算是解题的关键.11、C【解析】
设,,则,,相减得到,解得答案.【详解】设,,设直线斜率为,则,,相减得到:,的中点为,即,故,直线的方程为:.故选:.【点睛】本题考查了椭圆内点差法求直线方程,意在考查学生的计算能力和应用能力.12、D【解析】
因为要对600个零件进行编号,所以编号必须是三位数,因此按要求从第6行第6列开始向右读取数据,大于600的,重复出现的舍去,直至得到第六个编号.【详解】从第6行第6列开始向右读取数据,编号内的数据依次为:,因为535重复出现,所以符合要求的数据依次为,故第6个数据为578.选D.【点睛】本题考查了随机数表表的应用,正确掌握随机数表法的使用方法是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、91【解析】
设共有选票张,且票对应张数为,由此可构造不等式组化简得到,由投票有效率越高越小,可知,由此计算可得投票有效率.【详解】不妨设共有选票张,投票的有,票的有,票的有,则由题意可得:,化简得:,即,投票有效率越高,越小,则,,故本次投票的有效率(有效票数与总票数的比值)最高可能为.故答案为:.【点睛】本题考查线性规划的实际应用问题,关键是能够根据已知条件构造出变量所满足的关系式.14、【解析】
分别求得甲、乙被录取的概率,根据独立事件概率公式可求得结果.【详解】甲被录取的概率;乙被录取的概率;只有一人被录取的概率.故答案为:.【点睛】本题考查独立事件概率的求解问题,属于基础题.15、【解析】
根据二项展开式的通项公式即可得结果.【详解】解:(2x-1)7的展开式通式为:当时,,则.故答案为:【点睛】本题考查求二项展开式指定项的系数,是基础题.16、【解析】
利用复数模的运算性质,即可得答案.【详解】由已知可得:,,解得.故答案为:.【点睛】本题考查复数模的运算性质,考查推理能力与计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、证明见解析;1.【解析】
由题意可得椭圆的方程为,由点在直线上,且知的斜率必定存在,分类讨论当的斜率为时和斜率不为时的情况列出相应式子,即可得出直线与圆相切;由知,的面积为【详解】解:由题意,椭圆的焦点在轴上,且,所以.所以椭圆的方程为.由点在直线上,且知的斜率必定存在,当的斜率为时,,,于是,到的距离为,直线与圆相切.当的斜率不为时,设的方程为,与联立得,所以,,从而.而,故的方程为,而在上,故,从而,于是.此时,到的距离为,直线与圆相切.综上,直线与圆相切.由知,的面积为,上式中,当且仅当等号成立,所以面积的最小值为1.【点睛】本题主要考查直线与椭圆的位置关系、直线与圆的位置关系等基础知识,考查运算求解能力、推理论证能力和创新意识,考查化归与转化思想,属于难题.18、(1)见解析(2)见解析【解析】
(1)根据的导函数进行分类讨论单调性(2)欲证,只需证,构造函数,证明,这时需研究的单调性,求其最大值即可【详解】解:(1)的定义域为,,①当时,由得,由,得,所以在上单调递增,在单调递减;②当时,由得,由,得,或,所以在上单调递增,在单调递减,在单调递增;③当时,,所以在上单调递增;④当时,由,得,由,得,或,所以在上单调递增,在单调递减,在单调递增.(2)当时,欲证,只需证,令,,则,因存在,使得成立,即有,使得成立.当变化时,,的变化如下:0单调递增单调递减所以.因为,所以,所以.即,所以当时,成立.【点睛】考查求函数单调性的方法和用函数的最值证明不等式的方法,难题.19、(1)分布列见解析,;(2)0.8575【解析】
(1)根据题目所给数据求得分布列,并计算出数学期望.(2)根据对立事件概率计算公式、相互独立事件概率计算公式,计算出刘师傅讲座及加工个零件作示范的总时间不超过分钟的概率.【详解】(1)的分布列如下:202530350.150.300.400.15.(2)设,分别表示讲座前、讲座后加工该零件所需时间,事件表示“留师傅讲座及加工两个零件示范的总时间不超过100分钟”,则.【点睛】本小题主要考查随机变量分布列和数学期望的求法,考查对立事件概率计算,考查相互独立事件概率计算,属于中档题.20、(1)李某月应缴纳的个税金额为元,(2)分布列详见解析,期望为1150元【解析】
(1)分段计算个人所得税额;
(2)随机变量X的所有可能的取值为990,1190,1390,1590,分别求出各值对应的概率,列出分布列,求期望即可.【详解】解:(1)李某月应纳税所得额(含税)为:29600−5000−1000−2000=21600元
不超过3000的部分税额为3000×3%=90元
超过3000元至12000元的部分税额为9000×10%=900元,
超过12000元至25000元的部分税额为9600×20%=1920元
所以李某月应缴纳的个税金额为90+900+1920=2910元,
(2)有一个孩子需要赡养老人应纳税所得额(含税)为:20000−5000−1000−2000=12000元,
月应缴纳的个税金额为:90+900=990元
有一个孩子不需要赡养老人应纳税所得额(含税)为:20000−5000−1000=14000元,
月应缴纳的个税金额为:90+900+400=1390元;
没有孩子需要赡养老人应纳税所得额(含税)为:20000−5000−2000=13000元,
月应缴纳的个税金额为:90+90
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 业务介绍买卖居间合同模板(2篇)
- 2024版版权授权与发行合同
- 2024年度北京个人住房按揭贷款合同
- 2024年度股权转让与投资合同说明
- 2024年度家具家电安装分包合同
- 旅游与摄影结合
- 临时安保门卫合同(2024版)
- 跨境电商平台发展机遇分析
- 2024年度卫星导航系统研发合作协议
- 矿山数字化信息平台建设实践
- GB/T 4436-2012铝及铝合金管材外形尺寸及允许偏差
- 第10讲-群体决策模型
- GB/T 3876-2007钼及钼合金板
- GB/T 2007.6-1987散装矿产品取样、制样通则水分测定方法-热干燥法
- GB/T 1839-2008钢产品镀锌层质量试验方法
- 医院医疗欠费管理制度
- 北京市第5届迎春杯小学数学竞赛决赛试题doc
- 初中数学人教八年级上册第十三章轴对称最短路径问题修改PPT
- DB11∕994-2021 平战结合人民防空工程设计规范
- 信号与系统课设报告
- 《文言宾语前置句式》课件(广东省省级优课)
评论
0/150
提交评论