版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省庆阳长庆中学2025届高考冲刺模拟数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数是上的偶函数,且当时,函数是单调递减函数,则,,的大小关系是()A. B.C. D.2.已知集合,集合,若,则()A. B. C. D.3.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的,且球的表面积也是圆柱表面积的”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为,则该圆柱的内切球体积为()A. B. C. D.4.函数的图象与轴交点的横坐标构成一个公差为的等差数列,要得到函数的图象,只需将的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位5.已知函数,给出下列四个结论:①函数的值域是;②函数为奇函数;③函数在区间单调递减;④若对任意,都有成立,则的最小值为;其中正确结论的个数是()A. B. C. D.6.为得到函数的图像,只需将函数的图像()A.向右平移个长度单位 B.向右平移个长度单位C.向左平移个长度单位 D.向左平移个长度单位7.已知复数z满足(i为虚数单位),则在复平面内复数z对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知函数若恒成立,则实数的取值范围是()A. B. C. D.9.执行如图所示的程序框图,则输出的的值为()A. B.C. D.10.是虚数单位,复数在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知数列对任意的有成立,若,则等于()A. B. C. D.12.已知函数,当时,的取值范围为,则实数m的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,已知,则的最小值是________.14.请列举用0,1,2,3这4个数字所组成的无重复数字且比210大的所有三位奇数:___________.15.若变量,满足约束条件,则的最大值为__________.16.等差数列(公差不为0),其中,,成等比数列,则这个等比数列的公比为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角的对边分别为.已知,且.(1)求的值;(2)若的面积是,求的周长.18.(12分)如图所示,四棱柱中,底面为梯形,,,,,,.(1)求证:;(2)若平面平面,求二面角的余弦值.19.(12分)已知函数.(1)当时,求曲线在点的切线方程;(2)讨论函数的单调性.20.(12分)已知,其中.(1)当时,设函数,求函数的极值.(2)若函数在区间上递增,求的取值范围;(3)证明:.21.(12分)如图,已知四边形的直角梯形,∥BC,,,,为线段的中点,平面,,为线段上一点(不与端点重合).(1)若,(ⅰ)求证:PC∥平面;(ⅱ)求平面与平面所成的锐二面角的余弦值;(2)否存在实数满足,使得直线与平面所成的角的正弦值为,若存在,确定的值,若不存在,请说明理由.22.(10分)已知数列中,a1=1,其前n项和为,且满足.(1)求数列的通项公式;(2)记,若数列为递增数列,求λ的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
利用对数函数的单调性可得,再根据的单调性和奇偶性可得正确的选项.【详解】因为,,故.又,故.因为当时,函数是单调递减函数,所以.因为为偶函数,故,所以.故选:D.【点睛】本题考查抽象函数的奇偶性、单调性以及对数函数的单调性在大小比较中的应用,比较大小时注意选择合适的中间数来传递不等关系,本题属于中档题.2、A【解析】
根据或,验证交集后求得的值.【详解】因为,所以或.当时,,不符合题意,当时,.故选A.【点睛】本小题主要考查集合的交集概念及运算,属于基础题.3、D【解析】
设圆柱的底面半径为,则其母线长为,由圆柱的表面积求出,代入圆柱的体积公式求出其体积,结合题中的结论即可求出该圆柱的内切球体积.【详解】设圆柱的底面半径为,则其母线长为,因为圆柱的表面积公式为,所以,解得,因为圆柱的体积公式为,所以,由题知,圆柱内切球的体积是圆柱体积的,所以所求圆柱内切球的体积为.故选:D【点睛】本题考查圆柱的轴截面及表面积和体积公式;考查运算求解能力;熟练掌握圆柱的表面积和体积公式是求解本题的关键;属于中档题.4、A【解析】依题意有的周期为.而,故应左移.5、C【解析】
化的解析式为可判断①,求出的解析式可判断②,由得,结合正弦函数得图象即可判断③,由得可判断④.【详解】由题意,,所以,故①正确;为偶函数,故②错误;当时,,单调递减,故③正确;若对任意,都有成立,则为最小值点,为最大值点,则的最小值为,故④正确.故选:C.【点睛】本题考查三角函数的综合运用,涉及到函数的值域、函数单调性、函数奇偶性及函数最值等内容,是一道较为综合的问题.6、D【解析】,所以要的函数的图象,只需将函数的图象向左平移个长度单位得到,故选D7、D【解析】
根据复数运算,求得,再求其对应点即可判断.【详解】,故其对应点的坐标为.其位于第四象限.故选:D.【点睛】本题考查复数的运算,以及复数对应点的坐标,属综合基础题.8、D【解析】
由恒成立,等价于的图像在的图像的上方,然后作出两个函数的图像,利用数形结合的方法求解答案.【详解】因为由恒成立,分别作出及的图象,由图知,当时,不符合题意,只须考虑的情形,当与图象相切于时,由导数几何意义,此时,故.故选:D【点睛】此题考查的是函数中恒成立问题,利用了数形结合的思想,属于难题.9、B【解析】
列出循环的每一步,进而可求得输出的值.【详解】根据程序框图,执行循环前:,,,执行第一次循环时:,,所以:不成立.继续进行循环,…,当,时,成立,,由于不成立,执行下一次循环,,,成立,,成立,输出的的值为.故选:B.【点睛】本题考查的知识要点:程序框图的循环结构和条件结构的应用,主要考查学生的运算能力和转换能力,属于基础题型.10、D【解析】
求出复数在复平面内对应的点的坐标,即可得出结论.【详解】复数在复平面上对应的点的坐标为,该点位于第四象限.故选:D.【点睛】本题考查复数对应的点的位置的判断,属于基础题.11、B【解析】
观察已知条件,对进行化简,运用累加法和裂项法求出结果.【详解】已知,则,所以有,,,,两边同时相加得,又因为,所以.故选:【点睛】本题考查了求数列某一项的值,运用了累加法和裂项法,遇到形如时就可以采用裂项法进行求和,需要掌握数列中的方法,并能熟练运用对应方法求解.12、C【解析】
求导分析函数在时的单调性、极值,可得时,满足题意,再在时,求解的x的范围,综合可得结果.【详解】当时,,令,则;,则,∴函数在单调递增,在单调递减.∴函数在处取得极大值为,∴时,的取值范围为,∴又当时,令,则,即,∴综上所述,的取值范围为.故选C.【点睛】本题考查了利用导数分析函数值域的方法,考查了分段函数的性质,属于难题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:可先用向量的数量积公式将原式变形为:,然后再结合余弦定理整理为,再由cosC的余弦定理得到a,b的关系式,最后利用基本不等式求解即可.详解:已知,可得,将角A,B,C的余弦定理代入得,由,当a=b时取到等号,故cosC的最小值为.点睛:考查向量的数量积、余弦定理、基本不等式的综合运用,能正确转化是解题关键.属于中档题.14、231,321,301,1【解析】
分个位数字是1、3两种情况讨论,即得解【详解】0,1,2,3这4个数字所组成的无重复数字比210大的所有三位奇数有:(1)当个位数字是1时,数字可以是231,321,301;(2)当个位数字是3时数字可以是1.故答案为:231,321,301,1【点睛】本题考查了分类计数法的应用,考查了学生分类讨论,数学运算的能力,属于基础题.15、【解析】
根据约束条件可以画出可行域,从而将问题转化为直线在轴截距最大的问题的求解,通过数形结合的方式可确定过时,取最大值,代入可求得结果.【详解】由约束条件可得可行域如下图阴影部分所示:将化为,则最大时,直线在轴截距最大;由直线平移可知,当过时,在轴截距最大,由得:,.故答案为:.【点睛】本题考查线性规划中最值问题的求解,关键是能够将问题转化为直线在轴截距的最值的求解问题,通过数形结合的方式可求得结果.16、4【解析】
根据等差数列关系,用首项和公差表示出,解出首项和公差的关系,即可得解.【详解】设等差数列的公差为,由题意得:,则整理得,,所以故答案为:4【点睛】此题考查等差数列基本量的计算,涉及等比中项,考查基本计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)由正弦定理可得,,化简并结合,可求得三者间的关系,代入余弦定理可求得;(2)由(1)可求得,再结合三角形的面积公式,可求出,从而可求出答案.【详解】(1)因为,所以,整理得:.因为,所以,所以.由余弦定理可得.(2)由(1)知,则,因为的面积是,所以,即,解得,则.故的周长为:.【点睛】本题考查了正弦定理、余弦定理在解三角形中的应用,考查了三角形面积公式的应用,属于基础题.18、(1)证明见解析(2)【解析】
(1)取中点为,连接,,,,根据线段关系可证明为等边三角形,即可得;由为等边三角形,可得,从而由线面垂直判断定理可证明平面,即可证明.(2)以为原点,,,为,,轴建立空间直角坐标系,写出各个点的坐标,并求得平面和平面的法向量,即可由法向量法求得二面角的余弦值.【详解】(1)证明:取中点为,连接,,,如下图所示:因为,,,所以,故为等边三角形,则.连接,因为,,所以为等边三角形,则.又,所以平面.因为平面,所以.(2)由(1)知,因为平面平面,平面,所以平面,以为原点,,,为,,轴建立如图所示的空间直角坐标系,易求,则,,,,则,,.设平面的法向量,则即令,则,,故.设平面的法向量,则则令,则,,故,所以.由图可知,二面角为钝二面角角,所以二面角的余弦值为.【点睛】本题考查线面垂直的判定,由线面垂直判定线线垂直,由空间向量法求平面与平面形成二面角的大小,属于中档题.19、(1);(2)当时,在上单调递增,在上单调递减;当时,在和上单调递增,在上单调递减;当时,在上单调递增;当时,在和上单调递增,在上单调递减.【解析】
(1)根据导数的几何意义求解即可.(2)易得函数定义域是,且.故分,和与四种情况,分别分析得极值点的关系进而求得原函数的单调性即可.【详解】(1)当时,,则切线的斜率为.又,则曲线在点的切线方程是,即.(2)的定义域是..①当时,,所以当时,;当时,,所以在上单调递增,在上单调递减;②当时,,所以当和时,;当时,,所以在和上单调递增,在上单调递减;③当时,,所以在上恒成立.所以在上单调递增;④当时,,所以和时,;时,.所以在和上单调递增,在上单调递减.综上所述,当时,在上单调递增,在上单调递减;当时,在和上单调递增,在上单调递减;当时,在上单调递增;当时,在和上单调递增,在上单调递减.【点睛】本题主要考查了导数的几何意义以及含参数的函数单调性讨论,需要根据题意求函数的极值点,再根据极值点的大小关系分类讨论即可.属于常考题.20、(1)极大值,无极小值;(2).(3)见解析【解析】
(1)先求导,根据导数和函数极值的关系即可求出;(2)先求导,再函数在区间上递增,分离参数,构造函数,求出函数的最值,问题得以解决;(3)取得到,取,可得,累加和根据对数的运算性和放缩法即可证明.【详解】解:(1)当时,设函数,则令,解得当时,,当时,所以在上单调递增,在上单调递减所以当时,函数取得极大值,即极大值为,无极小值;(2)因为,所以,因为在区间上递增,所以在上恒成立,所以在区间上恒成立.当时,在区间上恒成立,当时,,设,则在区间上恒成立.所以在单调递增,则,所以,即综上所述.(3)由(2)可知当时,函数在区间上递增,所以,即,取,则.所以所以【点睛】此题考查了参数的取值范围以及恒成立的问题,以及不等式的证明,构造函数是关键,属于较难题.21、(1)(ⅰ)证明见解析(ⅱ)(2)存在,【解析】
(1)(i)连接交于点,连接,,依题意易证四边形为平行四边形,从而有,,由此能证明PC∥平面(ii)推导出,以为原点建立空间直角坐标系,利用向量法求解;(2)设,求出平面的法向量,利用向量法求解.【详解】(1)(ⅰ)证明:连接交于点,连接,,因为为线段的中点,所以,因为,所以因为∥所以四边形为平行四边形.所以又因为,所以又因为平面,平面,所以平面.(ⅱ)解:如图,在平行四边形中因为,,所以以为原点建立空间直角坐标系则,,,所以,,,平面的法向量为设平面的法向量为,则,即,取,得,设平面和平面所成的锐二面角为,则所以锐二面角的余弦值为(2)设所以,,设平面的法向量为,则,取,得,因为直线与平面所成的角的正弦值为,所以解得所以存在满足,使得直线与平面所成的角的正弦值为.【点睛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智能农业装备发展
- 个人厂房转让合同范本
- 2024版叉车搬运机器人技术研发合同
- 浙江省温州市(2024年-2025年小学五年级语文)人教版小升初模拟(下学期)试卷及答案
- 2024年度深圳品牌授权合同
- 2024年短视频内容创作与推广合同
- 病毒性胃肠炎易感人群研究
- 解读数字化转型趋势
- 电化学生物传感
- 研学旅游特色构建
- 股骨粗隆间骨折
- 殡仪馆鲜花采购投标方案
- 智能桥梁结构安全监测系统解决方案课件
- 办公楼物业服务管理的培训
- JTG∕T F30-2014 公路水泥混凝土路面施工技术细则
- 帆船知识课件
- 企业宣传片项目进度计划
- 2023-2024学年统部编版九年级道德与法治下册全册知识点总结讲义
- 奇瑞QQ冰淇淋说明书
- 糖尿病性舞蹈病
- EPC项目承包人施工方投资估算与设计方案匹配分析
评论
0/150
提交评论