上海市南汇一中2025届高三下学期第五次调研考试数学试题含解析_第1页
上海市南汇一中2025届高三下学期第五次调研考试数学试题含解析_第2页
上海市南汇一中2025届高三下学期第五次调研考试数学试题含解析_第3页
上海市南汇一中2025届高三下学期第五次调研考试数学试题含解析_第4页
上海市南汇一中2025届高三下学期第五次调研考试数学试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市南汇一中2025届高三下学期第五次调研考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设实数x,y满足条件x+y-2⩽02x-y+3⩾0x-y⩽0则A.1 B.2 C.3 D.42.设集合,集合,则=()A. B. C. D.R3.有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为cm,高度为cm,现往里面装直径为cm的球,在能盖住盖子的情况下,最多能装()(附:)A.个 B.个 C.个 D.个4.在区间上随机取一个实数,使直线与圆相交的概率为()A. B. C. D.5.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重比为58.79kg6.已知函数,下列结论不正确的是()A.的图像关于点中心对称 B.既是奇函数,又是周期函数C.的图像关于直线对称 D.的最大值是7.半正多面体(semiregularsolid)亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形为面的半正多面体.如图所示,图中网格是边长为1的正方形,粗线部分是某二十四等边体的三视图,则该几何体的体积为()A. B. C. D.8.已知某几何体的三视图如图所示,则该几何体外接球的表面积为()A. B. C. D.9.已知函数,其中,若恒成立,则函数的单调递增区间为()A. B.C. D.10.若函数(其中,图象的一个对称中心为,,其相邻一条对称轴方程为,该对称轴处所对应的函数值为,为了得到的图象,则只要将的图象()A.向右平移个单位长度 B.向左平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度11.已知直线是曲线的切线,则()A.或1 B.或2 C.或 D.或112.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是()A.48 B.60 C.72 D.120二、填空题:本题共4小题,每小题5分,共20分。13.已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是_______.14.某几何体的三视图如图所示(单位:),则该几何体的体积是_____;最长棱的长度是_____.15.二项式的展开式中所有项的二项式系数之和是64,则展开式中的常数项为______.16.设,分别是椭圆C:()的左、右焦点,直线l过交椭圆C于A,B两点,交y轴于E点,若满足,且,则椭圆C的离心率为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知曲线的参数方程为为参数),以直角坐标系原点为极点,以轴正半轴为极轴并取相同的单位长度建立极坐标系.(1)求曲线的极坐标方程,并说明其表示什么轨迹;(2)若直线的极坐标方程为,求曲线上的点到直线的最大距离.18.(12分)已知函数,,.函数的导函数在上存在零点.求实数的取值范围;若存在实数,当时,函数在时取得最大值,求正实数的最大值;若直线与曲线和都相切,且在轴上的截距为,求实数的值.19.(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)设点,直线与曲线交于,两点,求的值.20.(12分)在平面直角坐标系中,已知抛物线的焦点为,准线为,是抛物线上上一点,且点的横坐标为,.(1)求抛物线的方程;(2)过点的直线与抛物线交于、两点,过点且与直线垂直的直线与准线交于点,设的中点为,若、、四点共圆,求直线的方程.21.(12分)对于很多人来说,提前消费的认识首先是源于信用卡,在那个工资不高的年代,信用卡绝对是神器,稍微大件的东西都是可以选择用信用卡来买,甚至于分期买,然后慢慢还!现在银行贷款也是很风靡的,从房贷到车贷到一般的现金贷.信用卡“忽如一夜春风来”,遍布了各大小城市的大街小巷.为了解信用卡在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了100人进行抽样分析,得到如下列联表(单位:人)经常使用信用卡偶尔或不用信用卡合计40岁及以下15355040岁以上203050合计3565100(1)根据以上数据,能否在犯错误的概率不超过0.10的前提下认为市使用信用卡情况与年龄有关?(2)①现从所抽取的40岁及以下的网民中,按“经常使用”与“偶尔或不用”这两种类型进行分层抽样抽取10人,然后,再从这10人中随机选出4人赠送积分,求选出的4人中至少有3人偶尔或不用信用卡的概率;②将频率视为概率,从市所有参与调查的40岁以上的网民中随机抽取3人赠送礼品,记其中经常使用信用卡的人数为,求随机变量的分布列、数学期望和方差.参考公式:,其中.参考数据:0.150.100.050.0250.0102.0722.7063.8415.0246.63522.(10分)如图,四棱锥中,底面为直角梯形,,,,,在锐角中,E是边PD上一点,且.(1)求证:平面ACE;(2)当PA的长为何值时,AC与平面PCD所成的角为?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

画出可行域和目标函数,根据目标函数的几何意义平移得到答案.【详解】如图所示:画出可行域和目标函数,z=x+y+1,即y=-x+z-1,z表示直线在y轴的截距加上1,根据图像知,当x+y=2时,且x∈-13,1时,故选:C.【点睛】本题考查了线性规划问题,画出图像是解题的关键.2、D【解析】试题分析:由题,,,选D考点:集合的运算3、C【解析】

计算球心连线形成的正四面体相对棱的距离为cm,得到最上层球面上的点距离桶底最远为cm,得到不等式,计算得到答案.【详解】由题意,若要装更多的球,需要让球和铁皮桶侧面相切,且相邻四个球两两相切,这样,相邻的四个球的球心连线构成棱长为cm的正面体,易求正四面体相对棱的距离为cm,每装两个球称为“一层”,这样装层球,则最上层球面上的点距离桶底最远为cm,若想要盖上盖子,则需要满足,解得,所以最多可以装层球,即最多可以装个球.故选:【点睛】本题考查了圆柱和球的综合问题,意在考查学生的空间想象能力和计算能力.4、D【解析】

利用直线与圆相交求出实数的取值范围,然后利用几何概型的概率公式可求得所求事件的概率.【详解】由于直线与圆相交,则,解得.因此,所求概率为.故选:D.【点睛】本题考查几何概型概率的计算,同时也考查了利用直线与圆相交求参数,考查计算能力,属于基础题.5、D【解析】根据y与x的线性回归方程为y=0.85x﹣85.71,则=0.85>0,y与x具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该大学某女生身高增加1cm,预测其体重约增加0.85kg,C正确;该大学某女生身高为170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误.故选D.6、D【解析】

通过三角函数的对称性以及周期性,函数的最值判断选项的正误即可得到结果.【详解】解:,正确;,为奇函数,周期函数,正确;,正确;D:,令,则,,,,则时,或时,即在上单调递增,在和上单调递减;且,,,故D错误.故选:.【点睛】本题考查三角函数周期性和对称性的判断,利用导数判断函数最值,属于中档题.7、D【解析】

根据三视图作出该二十四等边体如下图所示,求出该几何体的棱长,可以将该几何体看作是相应的正方体沿各棱的中点截去8个三棱锥所得到的,可求出其体积.【详解】如下图所示,将该二十四等边体的直观图置于棱长为2的正方体中,由三视图可知,该几何体的棱长为,它是由棱长为2的正方体沿各棱中点截去8个三棱锥所得到的,该几何体的体积为,故选:D.【点睛】本题考查三视图,几何体的体积,对于二十四等边体比较好的处理方式是由正方体各棱的中点得到,属于中档题.8、C【解析】

由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,利用正弦定理求出底面三角形外接圆的半径,根据三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,求出球的半径,即可求解球的表面积.【详解】由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,如图:由底面边长可知,底面三角形的顶角为,由正弦定理可得,解得,三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,所以,该几何体外接球的表面积为:.故选:C【点睛】本题考查了多面体的内切球与外接球问题,由三视图求几何体的表面积,考查了学生的空间想象能力,属于基础题.9、A【解析】

,从而可得,,再解不等式即可.【详解】由已知,,所以,,由,解得,.故选:A.【点睛】本题考查求正弦型函数的单调区间,涉及到恒成立问题,考查学生转化与化归的思想,是一道中档题.10、B【解析】

由函数的图象的顶点坐标求出A,由周期求出,由五点法作图求出的值,可得的解析式,再根据函数的图象变换规律,诱导公式,得出结论.【详解】根据已知函数其中,的图象过点,,可得,,解得:.再根据五点法作图可得,可得:,可得函数解析式为:故把的图象向左平移个单位长度,可得的图象,故选B.【点睛】本题主要考查由函数的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出,由五点法作图求出的值,函数的图象变换规律,诱导公式的应用,属于中档题.11、D【解析】

求得直线的斜率,利用曲线的导数,求得切点坐标,代入直线方程,求得的值.【详解】直线的斜率为,对于,令,解得,故切点为,代入直线方程得,解得或1.故选:D【点睛】本小题主要考查根据切线方程求参数,属于基础题.12、A【解析】

对数字分类讨论,结合数字中有且仅有两个数字相邻,利用分类计数原理,即可得到结论【详解】数字出现在第位时,数字中相邻的数字出现在第位或者位,共有个数字出现在第位时,同理也有个数字出现在第位时,数字中相邻的数字出现在第位或者位,共有个故满足条件的不同的五位数的个数是个故选【点睛】本题主要考查了排列,组合及简单计数问题,解题的关键是对数字分类讨论,属于基础题。二、填空题:本题共4小题,每小题5分,共20分。13、0.08【解析】

先求解这组数据的平均数,然后利用方差的公式可得结果.【详解】首先求得,.故答案为:0.08.【点睛】本题主要考查数据的方差,明确方差的计算公式是求解的关键,侧重考查数据分析的核心素养.14、【解析】

由三视图还原原几何体,该几何体为四棱锥,底面为直角梯形,,,侧棱底面,由棱锥体积公式求棱锥体积,由勾股定理求最长棱的长度.【详解】由三视图还原原几何体如下图所示:该几何体为四棱锥,底面为直角梯形,,,侧棱底面,则该几何体的体积为,,,因此,该棱锥的最长棱的长度为.故答案为:;.【点睛】本题考查由三视图求体积、棱长,关键是由三视图还原原几何体,是中档题.15、【解析】

由二项式系数性质求出,由二项展开式通项公式得出常数项的项数,从而得常数项.【详解】由题意,.展开式通项为,由得,∴常数项为.故答案为:.【点睛】本题考查二项式定理,考查二项式系数的性质,掌握二项展开式通项公式是解题关键.16、【解析】

采用数形结合,计算以及,然后根据椭圆的定义可得,并使用余弦定理以及,可得结果.【详解】如图由,所以由,所以又,则所以所以化简可得:则故答案为:【点睛】本题考查椭圆的定义以及余弦定理的使用,关键在于根据角度求出线段的长度,考查分析能力以及计算能力,属中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),表示圆心为,半径为的圆;(2)【解析】

(1)根据参数得到直角坐标系方程,再转化为极坐标方程得到答案.(2)直线方程为,计算圆心到直线的距离加上半径得到答案.【详解】(1),即,化简得到:.即,表示圆心为,半径为的圆.(2),即,圆心到直线的距离为.故曲线上的点到直线的最大距离为.【点睛】本题考查了参数方程,极坐标方程,直线和圆的距离的最值,意在考查学生的计算能力和应用能力.18、;4;12.【解析】

由题意可知,,求导函数,方程在区间上有实数解,求出实数的取值范围;由,则,分步讨论,并利用导函数在函数的单调性的研究,得出正实数的最大值;设直线与曲线的切点为,因为,所以切线斜率,切线方程为,设直线与曲线的切点为,因为,所以切线斜率,即切线方程为,整理得.所以,求得,设,则,所以在上单调递增,最后求出实数的值.【详解】由题意可知,,则,即方程在区间上有实数解,解得;因为,则,①当,即时,恒成立,所以在上单调递增,不符题意;②当时,令,解得:,当时,,单调递增,所以不存在,使得在上的最大值为,不符题意;③当时,,解得:,且当时,,当时,,所以在上单调递减,在上单调递增,若,则在上单调递减,所以,若,则上单调递减,在上单调递增,由题意可知,,即,整理得,因为存在,符合上式,所以,解得,综上,的最大值为4;设直线与曲线的切点为,因为,所以切线斜率,即切线方程整理得:由题意可知,,即,即,解得所以切线方程为,设直线与曲线的切点为,因为,所以切线斜率,即切线方程为,整理得.所以,消去,整理得,且因为,解得,设,则,所以在上单调递增,因为,所以,所以,即.【点睛】本题主要考查导数在函数中的研究,导数的几何意义,属于难题.19、(1);(2)【解析】

(1)利用参数方程、普通方程、极坐标方程间的互化公式即可;(2)将直线参数方程代入圆的普通方程,可得,,而根据直线参数方程的几何意义,知,代入即可解决.【详解】(1)直线的参数方程为(为参数),消去;得曲线的极坐标方程为.由,,,可得,即曲线的直角坐标方程为;(2)将直线的参数方程(为参数)代入的方程,可得,,设,是点对应的参数值,,,则.【点睛】本题考查参数方程、普通方程、极坐标方程间的互化,直线参数方程的几何意义,是一道容易题.20、(1)(2)【解析】

(1)由抛物线的定义可得,即可求出,从而得到抛物线方程;(2)设直线的方程为,代入,得.设,,列出韦达定理,表示出中点的坐标,若、、、四点共圆,再结合,得,则即可求出参数,从而得解;【详解】解:(1)由抛物线定义,得,解得,所以抛物线的方程为.(2)设直线的方程为,代入,得.设,,则,.由,,得,所以.因为直线的斜率为,所以直线的斜率为,则直线的方程为.由解得.若、、、四点共圆,再结合,得,则,解得,所以直线的方程为.【点睛】本题考查抛物线的定义及性质的应用,直线与抛物线综合问题,属于中档题.21、(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论