版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山西省运城市重点中学高考考前模拟数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数(,且)在区间上的值域为,则()A. B. C.或 D.或42.是定义在上的增函数,且满足:的导函数存在,且,则下列不等式成立的是()A. B.C. D.3.已知集合A={0,1},B={0,1,2},则满足A∪C=B的集合C的个数为()A.4 B.3 C.2 D.14.设,,,则的大小关系是()A. B. C. D.5.如图,在中,点为线段上靠近点的三等分点,点为线段上靠近点的三等分点,则()A. B. C. D.6.已知双曲线的左,右焦点分别为,O为坐标原点,P为双曲线在第一象限上的点,直线PO,分别交双曲线C的左,右支于另一点,且,则双曲线的离心率为()A. B.3 C.2 D.7.是虚数单位,复数在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知函数,若,则等于()A.-3 B.-1 C.3 D.09.已知复数,(为虚数单位),若为纯虚数,则()A. B.2 C. D.10.存在点在椭圆上,且点M在第一象限,使得过点M且与椭圆在此点的切线垂直的直线经过点,则椭圆离心率的取值范围是()A. B. C. D.11.如图所示程序框图,若判断框内为“”,则输出()A.2 B.10 C.34 D.9812.设,满足约束条件,则的最大值是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在正方体中,已知点在直线上运动,则下列四个命题中:①三棱锥的体积不变;②;③当为中点时,二面角的余弦值为;④若正方体的棱长为2,则的最小值为;其中说法正确的是____________(写出所有说法正确的编号)14.某高中共有1800人,其中高一、高二、高三年级的人数依次成等差数列,现用分层抽样的方法从中抽取60人,那么高二年级被抽取的人数为________.15.设是定义在上的函数,且,对任意,若经过点的一次函数与轴的交点为,且互不相等,则称为关于函数的平均数,记为.当_________时,为的几何平均数.(只需写出一个符合要求的函数即可)16.设为互不相等的正实数,随机变量和的分布列如下表,若记,分别为的方差,则_____.(填>,<,=)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,已知直线的直角坐标方程为,曲线的参数方程为(为参数),以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线和直线的极坐标方程;(2)已知直线与曲线、相交于异于极点的点,若的极径分别为,求的值.18.(12分)已知{an}是一个公差大于0的等差数列,且满足a3a5=45,a2+a6=1.(I)求{an}的通项公式;(Ⅱ)若数列{bn}满足:…,求{bn}的前n项和.19.(12分)已知椭圆的左焦点为F,上顶点为A,直线AF与直线垂直,垂足为B,且点A是线段BF的中点.(I)求椭圆C的方程;(II)若M,N分别为椭圆C的左,右顶点,P是椭圆C上位于第一象限的一点,直线MP与直线交于点Q,且,求点P的坐标.20.(12分)如图,过点且平行与x轴的直线交椭圆于A、B两点,且.(1)求椭圆的标准方程;(2)过点M且斜率为正的直线交椭圆于段C、D,直线AC、BD分别交直线于点E、F,求证:是定值.21.(12分)已知数列是等差数列,前项和为,且,.(1)求.(2)设,求数列的前项和.22.(10分)已知点到抛物线C:y1=1px准线的距离为1.(Ⅰ)求C的方程及焦点F的坐标;(Ⅱ)设点P关于原点O的对称点为点Q,过点Q作不经过点O的直线与C交于两点A,B,直线PA,PB,分别交x轴于M,N两点,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
对a进行分类讨论,结合指数函数的单调性及值域求解.【详解】分析知,.讨论:当时,,所以,,所以;当时,,所以,,所以.综上,或,故选C.【点睛】本题主要考查指数函数的值域问题,指数函数的值域一般是利用单调性求解,侧重考查数学运算和数学抽象的核心素养.2、D【解析】
根据是定义在上的增函数及有意义可得,构建新函数,利用导数可得为上的增函数,从而可得正确的选项.【详解】因为是定义在上的增函数,故.又有意义,故,故,所以.令,则,故在上为增函数,所以即,整理得到.故选:D.【点睛】本题考查导数在函数单调性中的应用,一般地,数的大小比较,可根据数的特点和题设中给出的原函数与导数的关系构建新函数,本题属于中档题.3、A【解析】
由可确定集合中元素一定有的元素,然后列出满足题意的情况,得到答案.【详解】由可知集合中一定有元素2,所以符合要求的集合有,共4种情况,所以选A项.【点睛】考查集合并集运算,属于简单题.4、A【解析】
选取中间值和,利用对数函数,和指数函数的单调性即可求解.【详解】因为对数函数在上单调递增,所以,因为对数函数在上单调递减,所以,因为指数函数在上单调递增,所以,综上可知,.故选:A【点睛】本题考查利用对数函数和指数函数的单调性比较大小;考查逻辑思维能力和知识的综合运用能力;选取合适的中间值是求解本题的关键;属于中档题、常考题型.5、B【解析】
,将,代入化简即可.【详解】.故选:B.【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算、数乘运算,考查学生的运算能力,是一道中档题.6、D【解析】
本道题结合双曲线的性质以及余弦定理,建立关于a与c的等式,计算离心率,即可.【详解】结合题意,绘图,结合双曲线性质可以得到PO=MO,而,结合四边形对角线平分,可得四边形为平行四边形,结合,故对三角形运用余弦定理,得到,而结合,可得,,代入上式子中,得到,结合离心率满足,即可得出,故选D.【点睛】本道题考查了余弦定理以及双曲线的性质,难度偏难.7、D【解析】
求出复数在复平面内对应的点的坐标,即可得出结论.【详解】复数在复平面上对应的点的坐标为,该点位于第四象限.故选:D.【点睛】本题考查复数对应的点的位置的判断,属于基础题.8、D【解析】分析:因为题设中给出了的值,要求的值,故应考虑两者之间满足的关系.详解:由题设有,故有,所以,从而,故选D.点睛:本题考查函数的表示方法,解题时注意根据问题的条件和求解的结论之间的关系去寻找函数的解析式要满足的关系.9、C【解析】
把代入,利用复数代数形式的除法运算化简,由实部为0且虚部不为0求解即可.【详解】∵,∴,∵为纯虚数,∴,解得.故选C.【点睛】本题考查复数代数形式的除法运算,考查复数的基本概念,是基础题.10、D【解析】
根据题意利用垂直直线斜率间的关系建立不等式再求解即可.【详解】因为过点M椭圆的切线方程为,所以切线的斜率为,由,解得,即,所以,所以.故选:D【点睛】本题主要考查了建立不等式求解椭圆离心率的问题,属于基础题.11、C【解析】
由题意,逐步分析循环中各变量的值的变化情况,即可得解.【详解】由题意运行程序可得:,,,;,,,;,,,;不成立,此时输出.故选:C.【点睛】本题考查了程序框图,只需在理解程序框图的前提下细心计算即可,属于基础题.12、D【解析】
作出不等式对应的平面区域,由目标函数的几何意义,通过平移即可求z的最大值.【详解】作出不等式组的可行域,如图阴影部分,作直线:在可行域内平移当过点时,取得最大值.由得:,故选:D【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、①②④【解析】
①∵,∴平面
,得出上任意一点到平面的距离相等,所以判断命题①;②由已知得出点P在面上的射影在上,根据线面垂直的判定和性质或三垂线定理,可判断命题②;③当为中点时,以点D为坐标原点,建立空间直角系,如下图所示,运用二面角的空间向量求解方法可求得二面角的余弦值,可判断命题③;④过作平面交于点,做点关于面对称的点,使得点在平面内,根据对称性和两点之间线段最短,可求得当点在点时,在一条直线上,取得最小值.可判断命题④.【详解】①∵,∴平面
,所以上任意一点到平面的距离相等,所以三棱锥的体积不变,所以①正确;
②在直线上运动时,点P在面上的射影在上,所以DP在面上的射影在上,又,所以,所以②正确;③当为中点时,以点D为坐标原点,建立空间直角系,如下图所示,设正方体的棱长为2.则:,,所以,设面的法向量为,则,即,令,则,设面的法向量为,,即,,由图示可知,二面角是锐二面角,所以二面角的余弦值为,所以③不正确;④过作平面交于点,做点关于面对称的点,使得点在平面内,则,所以,当点在点时,在一条直线上,取得最小值.因为正方体的棱长为2,所以设点的坐标为,,,所以,所以,又所以,所以,,,故④正确.
故答案为:①②④.【点睛】本题考查空间里的线线,线面,面面关系,几何体的体积,在求解空间里的两线段的和的最小值,仍可以运用对称的思想,两点之间线段最短进行求解,属于难度题.14、【解析】
由三个年级人数成等差数列和总人数可求得高二年级共有人,根据抽样比可求得结果.【详解】设高一、高二、高三人数分别为,则且,解得:,用分层抽样的方法抽取人,那么高二年级被抽取的人数为人.故答案为:.【点睛】本题考查分层抽样问题的求解,涉及到等差数列的相关知识,属于基础题.15、【解析】
由定义可知三点共线,即,通过整理可得,继而可求出正确答案.【详解】解:根据题意,由定义可知:三点共线.故可得:,即,整理得:,故可以选择等.故答案为:.【点睛】本题考查了两点的斜率公式,考查了推理能力,考查了运算能力.本题关键是分析出三点共线.16、>【解析】
根据方差计算公式,计算出的表达式,由此利用差比较法,比较出两者的大小关系.【详解】,故.,.要比较的大小,只需比较与,两者作差并化简得①,由于为互不相等的正实数,故,也即,也即.故答案为:【点睛】本小题主要考查随机变量期望和方差的计算,考查差比较法比较大小,考查运算求解能力,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),.(2)【解析】
(1)先将曲线的参数方程化为直角坐标方程,即可代入公式化为极坐标;根据直线的直角坐标方程,求得倾斜角,即可得极坐标方程.(2)将直线的极坐标方程代入曲线、可得,进而代入可得的值.【详解】(1)曲线的参数方程为(为参数),消去得,把,代入得,从而得的极坐标方程为,∵直线的直角坐标方程为,其倾斜角为,∴直线的极坐标方程为.(2)将代入曲线的极坐标方程分别得到,则.【点睛】本题考查了参数方程化为普通方程的方法,直角坐标方程化为极坐标方程的方法,极坐标的几何意义,属于中档题.18、(I);(Ⅱ)【解析】
(Ⅰ)设等差数列的公差为,则依题设.由,可得.由,得,可得.所以.可得.(Ⅱ)设,则.即,可得,且.所以,可知.所以,所以数列是首项为4,公比为2的等比数列.所以前项和.考点:等差数列通项公式、用数列前项和求数列通项公式.19、(I).(II)【解析】
(I)写出坐标,利用直线与直线垂直,得到.求出点的坐标代入,可得到的一个关系式,由此求得和的值,进而求得椭圆方程.(II)设出点的坐标,由此写出直线的方程,从而求得点的坐标,代入,化简可求得点的坐标.【详解】(I)∵椭圆的左焦点,上顶点,直线AF与直线垂直∴直线AF的斜率,即①又点A是线段BF的中点∴点的坐标为又点在直线上∴②∴由①②得:∴∴椭圆的方程为.(II)设由(I)易得顶点M、N的坐标为∴直线MP的方程是:由得:又点P在椭圆上,故∴∴∴或(舍)∴∴点P的坐标为【点睛】本小题主要考查直线和圆锥曲线的位置关系,考查两直线垂直的条件,考查向量数量积的运算.属于中档题.在解题过程中,首先阅读清楚题意,题目所叙述的坐标、所叙述的直线是怎么得到的,向量的数量积对应的坐标都有哪一些,应该怎么得到,这些在读题的时候需要分析清楚.20、(1);(2)证明见解析.【解析】
(1)由题意求得的坐标,代入椭圆方程求得,由此求得椭圆的标准方程.(2)设出直线的方程,联立直线的方程和椭圆方程,可得关于的一元二次方程,设出的坐标,分别求出直线与直线的方程,从而求得两点的纵坐标,利用根与系数关系可化简证得为定值.【详解】(1)由已知可得:,代入椭圆方程得:椭圆方程为;(2)设直线CD的方程为,代入,得:设,,则有,则AC的方程为,令,得BD的方程为,令,得,证毕.【点睛】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查计算能力,是难题.21、(1)(2)【解析】
(1)由数列是等差数列,所以,解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《汽车营销方案》课件
- 化疗病人的临床护理
- 医疗设备操作培训
- 数学学案:课堂导学二次函数的性质与图象
- 大学校庆团日活动
- 一次性使用医疗无菌用品管理
- 中层管理思维培训
- 基础管理类培训
- 信息安全事件案例
- 医疗组组长工作职责
- 采煤教学课件
- 湖北省荆门市各县区乡镇行政村村庄村名居民村民委员会明细及行政区划代码
- 提高护士手卫生执行率PDCA案例汇报
- 浅析因俄罗斯社会变革产生的俄语新词
- 陶瓷厂工艺设计42
- 幼儿混龄区域活动-完整版PPT课件
- GA∕T 1788.3-2021 公安视频图像信息系统安全技术要求 第3部分:安全交互
- 金华市防空地下室设计技术咨询要点
- 最新商业建筑设计规范与商业建筑防火规范.
- 年产20万吨烧碱电解工段的初步工艺设计
- 软基处理监测及检测方案
评论
0/150
提交评论