福建省漳州八校2025届高考仿真卷数学试卷含解析_第1页
福建省漳州八校2025届高考仿真卷数学试卷含解析_第2页
福建省漳州八校2025届高考仿真卷数学试卷含解析_第3页
福建省漳州八校2025届高考仿真卷数学试卷含解析_第4页
福建省漳州八校2025届高考仿真卷数学试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省漳州八校2025届高考仿真卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某几何体的三视图如图所示,则该几何体的体积为()A. B.3 C. D.42.设集合,集合,则=()A. B. C. D.R3.已知曲线的一条对称轴方程为,曲线向左平移个单位长度,得到曲线的一个对称中心的坐标为,则的最小值是()A. B. C. D.4.已知角的顶点与原点重合,始边与轴的正半轴重合,终边经过点,则()A. B. C. D.5.已知函数,若方程恰有两个不同实根,则正数m的取值范围为()A. B.C. D.6.已知,满足条件(为常数),若目标函数的最大值为9,则()A. B. C. D.7.已知命题:是“直线和直线互相垂直”的充要条件;命题:对任意都有零点;则下列命题为真命题的是()A. B. C. D.8.《易经》包含着很多哲理,在信息学、天文学中都有广泛的应用,《易经》的博大精深,对今天的几何学和其它学科仍有深刻的影响.下图就是易经中记载的几何图形——八卦田,图中正八边形代表八卦,中间的圆代表阴阳太极图,八块面积相等的曲边梯形代表八卦田.已知正八边形的边长为,阴阳太极图的半径为,则每块八卦田的面积约为()A. B.C. D.9.已知函数,若关于的方程有4个不同的实数根,则实数的取值范围为()A. B. C. D.10.直线与圆的位置关系是()A.相交 B.相切 C.相离 D.相交或相切11.已知集合,则=()A. B. C. D.12.设分别为的三边的中点,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,,,则_________.14.抛物线上到其焦点距离为5的点有_______个.15.“直线l1:与直线l2:平行”是“a=2”的_______条件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”).16.已知,若的展开式中的系数比x的系数大30,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某公司打算引进一台设备使用一年,现有甲、乙两种设备可供选择.甲设备每台10000元,乙设备每台9000元.此外设备使用期间还需维修,对于每台设备,一年间三次及三次以内免费维修,三次以外的维修费用均为每次1000元.该公司统计了曾使用过的甲、乙各50台设备在一年间的维修次数,得到下面的频数分布表,以这两种设备分别在50台中的维修次数频率代替维修次数发生的概率.维修次数23456甲设备5103050乙设备05151515(1)设甲、乙两种设备每台购买和一年间维修的花费总额分别为和,求和的分布列;(2)若以数学期望为决策依据,希望设备购买和一年间维修的花费总额尽量低,且维修次数尽量少,则需要购买哪种设备?请说明理由.18.(12分)某广告商租用了一块如图所示的半圆形封闭区域用于产品展示,该封闭区域由以为圆心的半圆及直径围成.在此区域内原有一个以为直径、为圆心的半圆形展示区,该广告商欲在此基础上,将其改建成一个凸四边形的展示区,其中、分别在半圆与半圆的圆弧上,且与半圆相切于点.已知长为40米,设为.(上述图形均视作在同一平面内)(1)记四边形的周长为,求的表达式;(2)要使改建成的展示区的面积最大,求的值.19.(12分)网络看病就是国内或者国外的单个人、多个人或者单位通过国际互联网或者其他局域网对自我、他人或者某种生物的生理疾病或者机器故障进行查找询问、诊断治疗、检查修复的一种新兴的看病方式.因此,实地看病与网络看病便成为现在人们的两种看病方式,最近某信息机构调研了患者对网络看病,实地看病的满意程度,在每种看病方式的患者中各随机抽取15名,将他们分成两组,每组15人,分别对网络看病,实地看病两种方式进行满意度测评,根据患者的评分(满分100分)绘制了如图所示的茎叶图:(1)根据茎叶图判断患者对于网络看病、实地看病那种方式的满意度更高?并说明理由;(2)若将大于等于80分视为“满意”,根据茎叶图填写下面的列联表:满意不满意总计网络看病实地看病总计并根据列联表判断能否有的把握认为患者看病满意度与看病方式有关?(3)从网络看病的评价“满意”的人中随机抽取2人,求这2人平分都低于90分的概率.附,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82820.(12分)已知函数.(1)若,且,求证:;(2)若时,恒有,求的最大值.21.(12分)如图,在四棱锥中,四边形是直角梯形,底面,是的中点.(1).求证:平面平面;(2).若二面角的余弦值为,求直线与平面所成角的正弦值.22.(10分)如图,设点为椭圆的右焦点,圆过且斜率为的直线交圆于两点,交椭圆于点两点,已知当时,(1)求椭圆的方程.(2)当时,求的面积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

首先把三视图转换为几何体,该几何体为由一个三棱柱体,切去一个三棱锥体,由柱体、椎体的体积公式进一步求出几何体的体积.【详解】解:根据几何体的三视图转换为几何体为:该几何体为由一个三棱柱体,切去一个三棱锥体,如图所示:故:.故选:C.【点睛】本题考查了由三视图求几何体的体积、需熟记柱体、椎体的体积公式,考查了空间想象能力,属于基础题.2、D【解析】试题分析:由题,,,选D考点:集合的运算3、C【解析】

在对称轴处取得最值有,结合,可得,易得曲线的解析式为,结合其对称中心为可得即可得到的最小值.【详解】∵直线是曲线的一条对称轴.,又..∴平移后曲线为.曲线的一个对称中心为..,注意到故的最小值为.故选:C.【点睛】本题考查余弦型函数性质的应用,涉及到函数的平移、函数的对称性,考查学生数形结合、数学运算的能力,是一道中档题.4、A【解析】

由已知可得,根据二倍角公式即可求解.【详解】角的顶点与原点重合,始边与轴的正半轴重合,终边经过点,则,.故选:A.【点睛】本题考查三角函数定义、二倍角公式,考查计算求解能力,属于基础题.5、D【解析】

当时,函数周期为,画出函数图像,如图所示,方程两个不同实根,即函数和有图像两个交点,计算,,根据图像得到答案.【详解】当时,,故函数周期为,画出函数图像,如图所示:方程,即,即函数和有两个交点.,,故,,,,.根据图像知:.故选:.【点睛】本题考查了函数的零点问题,确定函数周期画出函数图像是解题的关键.6、B【解析】

由目标函数的最大值为9,我们可以画出满足条件件为常数)的可行域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数的方程组,消参后即可得到的取值.【详解】画出,满足的为常数)可行域如下图:由于目标函数的最大值为9,可得直线与直线的交点,使目标函数取得最大值,将,代入得:.故选:.【点睛】如果约束条件中含有参数,我们可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组,代入另一条直线方程,消去,后,即可求出参数的值.7、A【解析】

先分别判断每一个命题的真假,再利用复合命题的真假判断确定答案即可.【详解】当时,直线和直线,即直线为和直线互相垂直,所以“”是直线和直线互相垂直“的充分条件,当直线和直线互相垂直时,,解得.所以“”是直线和直线互相垂直“的不必要条件.:“”是直线和直线互相垂直“的充分不必要条件,故是假命题.当时,没有零点,所以命题是假命题.所以是真命题,是假命题,是假命题,是假命题.故选:.【点睛】本题主要考查充要条件的判断和两直线的位置关系,考查二次函数的图象,考查学生对这些知识的理解掌握水平.8、B【解析】

由图利用三角形的面积公式可得正八边形中每个三角形的面积,再计算出圆面积的,两面积作差即可求解.【详解】由图,正八边形分割成个等腰三角形,顶角为,设三角形的腰为,由正弦定理可得,解得,所以三角形的面积为:,所以每块八卦田的面积约为:.故选:B【点睛】本题考查了正弦定理解三角形、三角形的面积公式,需熟记定理与面积公式,属于基础题.9、C【解析】

求导,先求出在单增,在单减,且知设,则方程有4个不同的实数根等价于方程在上有两个不同的实数根,再利用一元二次方程根的分布条件列不等式组求解可得.【详解】依题意,,令,解得,,故当时,,当,,且,故方程在上有两个不同的实数根,故,解得.故选:C.【点睛】本题考查确定函数零点或方程根个数.其方法:(1)构造法:构造函数(易求,可解),转化为确定的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出的图象草图,数形结合求解;(2)定理法:先用零点存在性定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.10、D【解析】

由几何法求出圆心到直线的距离,再与半径作比较,由此可得出结论.【详解】解:由题意,圆的圆心为,半径,∵圆心到直线的距离为,,,故选:D.【点睛】本题主要考查直线与圆的位置关系,属于基础题.11、D【解析】

先求出集合A,B,再求集合B的补集,然后求【详解】,所以.故选:D【点睛】此题考查的是集合的并集、补集运算,属于基础题.12、B【解析】

根据题意,画出几何图形,根据向量加法的线性运算即可求解.【详解】根据题意,可得几何关系如下图所示:,故选:B【点睛】本题考查了向量加法的线性运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

先由题意得:,再利用向量数量积的几何意义得,可得结果.【详解】由知:,则在方向的投影为,由向量数量积的几何意义得:,∴故答案为【点睛】本题考查了投影的应用,考查了数量积的几何意义及向量的模的运算,属于基础题.14、2【解析】

设符合条件的点,由抛物线的定义可得,即可求解.【详解】设符合条件的点,则,所以符合条件的点有2个.故答案为:2【点睛】本题考查抛物线的定义的应用,考查抛物线的焦半径.15、必要不充分【解析】

先求解直线l1与直线l2平行的等价条件,然后进行判断.【详解】“直线l1:与直线l2:平行”等价于a=±2,故“直线l1:与直线l2:平行”是“a=2”的必要不充分条件.故答案为:必要不充分.【点睛】本题主要考查充分必要条件的判定,把已知条件进行等价转化是求解这类问题的关键,侧重考查逻辑推理的核心素养.16、2【解析】

利用二项展开式的通项公式,二项式系数的性质,求得的值.【详解】展开式通项为:且的展开式中的系数比的系数大,即:解得:(舍去)或本题正确结果:【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)分布列见解析,分布列见解析;(2)甲设备,理由见解析【解析】

(1)的可能取值为10000,11000,12000,的可能取值为9000,10000,11000,12000,计算概率得到分布列;(2)计算期望,得到,设甲、乙两设备一年内的维修次数分别为,,计算分布列,计算数学期望得到答案.【详解】(1)的可能取值为10000,11000,12000,,因此的分布如下100001100012000的可能取值为9000,10000,11000,12000,,,因此的分布列为如下9000100001100012000(2)设甲、乙两设备一年内的维修次数分别为,的可能取值为2,3,4,5,,,则的分布列为2345的可能取值为3,4,5,6,,,则的分布列为3456由于,,因此需购买甲设备【点睛】本题考查了数学期望和分布列,意在考查学生的计算能力和应用能力.18、(1),.(2)【解析】

(1)由余弦定理的,然后根据直线与圆相切的性质求出,从而求出;(2)求得的表达式,通过求导研究函数的单调性求得最大值.【详解】解:(1)连.由条件得.在三角形中,,,,由余弦定理,得,因为与半圆相切于,所以,所以,所以.所以四边形的周长为,.(2)设四边形的面积为,则,.所以,.令,得列表:+0-增最大值减答:要使改建成的展示区的面积最大,的值为.【点睛】本题考查余弦定理、直线与圆的位置关系、导数与函数最值的关系,考查考生的逻辑思维能力,运算求解能力,以及函数与方程的思想.19、(1)实地看病的满意度更高,理由见解析;(2)列联表见解析,有;(3).【解析】

(1)对实地看病满意度更高,可以从茎叶图四个方面选一个回答即可;(2)先完成列联表,再由独立性检验得有的把握认为患者看病满意度与看病方式有关;(3)利用古典概型的概率公式求得这2人平分都低于90分的概率.【详解】(1)对实地看病满意度更高,理由如下:(i)由茎叶图可知:在网络看病中,有的患者满意度评分低于80分;在实地看病中,有的患者评分高于80分,因此患者对实地看病满意度更高.(ii)由茎叶图可知:网络看病满意度评分的中位数为73分,实地看病评分的中位数为87分,因此患者对实地看病满意度更高.(iii)由茎叶图可知:网络看病的满意度评分平均分低于80分;实地看病的满意度的评分平均分高于80分,因此患者对实地看病满意度更高.(iV)由茎叶图可知:网络看病的满意度评分在茎6上的最多,关于茎7大致呈对称分布;实地看病的评分分布在茎8,上的最多,关于茎8大致呈对称分布,又两种看病方式打分的分布区间相同,故可以认为实地看病评分比网络看病打分更高,因此实地看病的满意度更高.以上给出了4种理由,考生答出其中任意一一种或其他合理理由均可得分.(2)参加网络看病满意度调查的15名患者中共有5名对网络看病满意,10名对网络看病不满意;参加实地看病满意度调查的15名患者中共有10名对实地看病满意,5名对实地看病不满意.故完成列联表如下:满意不满意总计网络看病51015实地看病10515总计151530于是,所以有的把握认为患者看病满意度与看病方式有关.(3)网络看病的评价的分数依次为82,85,85,88,92,由小到大分别记为,从网络看病的评价“满意”的人中随机抽取2人,所有可能情况有:;;;共10种,其中,这2人评分都低于90分的情况有:;;共6种,故由古典概型公式得这2人评分都低于90分的概率.【点睛】本题主要考查茎叶图的应用和独立性检验,考查古典概型的概率的计算,意在考查学生对这些知识的理解掌握水平.20、(1)见解析;(2).【解析】

(1)利用导数分析函数的单调性,并设,则,,将不等式等价转化为证明,构造函数,利用导数分析函数在区间上的单调性,通过推导出来证得结论;(2)构造函数,对实数分、、,利用导数分析函数的单调性,求出函数的最小值,再通过构造新函数,利用导数求出函数的最大值,可得出的最大值.【详解】(1),,所以,函数单调递增,所以,当时,,此时,函数单调递减;当时,,此时,函数单调递增.要证,即证.不妨设,则,,下证,即证,构造函数,,所以,函数在区间上单调递增,,,即,即,,且函数在区间上单调递增,所以,即,故结论成立;(2)由恒成立,得恒成立,令,则.①当时,对任意的,,函数在上单调递增,当时,,不符合题意;②当时,;③当时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论