版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023届河南省卢氏县实验高中高中毕业班综合测试(二)数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.是虚数单位,复数在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知,,则的大小关系为()A. B. C. D.3.对两个变量进行回归分析,给出如下一组样本数据:,,,,下列函数模型中拟合较好的是()A. B. C. D.4.已知函数,为图象的对称中心,若图象上相邻两个极值点,满足,则下列区间中存在极值点的是()A. B. C. D.5.已知函数(,,),将函数的图象向左平移个单位长度,得到函数的部分图象如图所示,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.若复数(为虚数单位),则()A. B. C. D.7.双曲线x26-y23=1的渐近线与圆(x-3)2+y2=A.3 B.2C.3 D.68.已知平面向量,满足,,且,则()A.3 B. C. D.59.已知复数,则对应的点在复平面内位于()A.第一象限 B.第二象限C.第三象限 D.第四象限10.下列函数中既关于直线对称,又在区间上为增函数的是()A.. B.C. D.11.已知集合,则=A. B. C. D.12.已知复数z,则复数z的虚部为()A. B. C.i D.i二、填空题:本题共4小题,每小题5分,共20分。13.高三(1)班共有56人,学号依次为1,2,3,…,56,现用系统抽样的办法抽取一个容量为4的样本,已知学号为6,34,48的同学在样本中,那么还有一个同学的学号应为.14.已知两点,,若直线上存在点满足,则实数满足的取值范围是__________.15.已知为偶函数,当时,,则__________.16.在平面五边形中,,,,且.将五边形沿对角线折起,使平面与平面所成的二面角为,则沿对角线折起后所得几何体的外接球的表面积是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱柱中,平面ABC.(1)证明:平面平面(2)求二面角的余弦值.18.(12分)已知椭圆过点且椭圆的左、右焦点与短轴的端点构成的四边形的面积为.(1)求椭圆C的标准方程:(2)设A是椭圆的左顶点,过右焦点F的直线,与椭圆交于P,Q,直线AP,AQ与直线交于M,N,线段MN的中点为E.①求证:;②记,,的面积分别为、、,求证:为定值.19.(12分)对于非负整数集合(非空),若对任意,或者,或者,则称为一个好集合.以下记为的元素个数.(1)给出所有的元素均小于的好集合.(给出结论即可)(2)求出所有满足的好集合.(同时说明理由)(3)若好集合满足,求证:中存在元素,使得中所有元素均为的整数倍.20.(12分)已知函数u(x)=xlnx,v(x)x﹣1,m∈R.(1)令m=2,求函数h(x)的单调区间;(2)令f(x)=u(x)﹣v(x),若函数f(x)恰有两个极值点x1,x2,且满足1e(e为自然对数的底数)求x1•x2的最大值.21.(12分)记为数列的前项和,N.(1)求;(2)令,证明数列是等比数列,并求其前项和.22.(10分)已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y﹣29=0相切.(1)求圆的方程;(2)设直线ax﹣y+5=0(a>0)与圆相交于A,B两点,求实数a的取值范围;(3)在(2)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(﹣2,4),若存在,求出实数a的值;若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
求出复数在复平面内对应的点的坐标,即可得出结论.【详解】复数在复平面上对应的点的坐标为,该点位于第四象限.故选:D.【点睛】本题考查复数对应的点的位置的判断,属于基础题.2.D【解析】
由指数函数的图像与性质易得最小,利用作差法,结合对数换底公式及基本不等式的性质即可比较和的大小关系,进而得解.【详解】根据指数函数的图像与性质可知,由对数函数的图像与性质可知,,所以最小;而由对数换底公式化简可得由基本不等式可知,代入上式可得所以,综上可知,故选:D.【点睛】本题考查了指数式与对数式的化简变形,对数换底公式及基本不等式的简单应用,作差法比较大小,属于中档题.3.D【解析】
作出四个函数的图象及给出的四个点,观察这四个点在靠近哪个曲线.【详解】如图,作出A,B,C,D中四个函数图象,同时描出题中的四个点,它们在曲线的两侧,与其他三个曲线都离得很远,因此D是正确选项,故选:D.【点睛】本题考查回归分析,拟合曲线包含或靠近样本数据的点越多,说明拟合效果好.4.A【解析】
结合已知可知,可求,进而可求,代入,结合,可求,即可判断.【详解】图象上相邻两个极值点,满足,即,,,且,,,,,,当时,为函数的一个极小值点,而.故选:.【点睛】本题主要考查了正弦函数的图象及性质的简单应用,解题的关键是性质的灵活应用.5.B【解析】
先根据图象求出函数的解析式,再由平移知识得到的解析式,然后分别找出和的等价条件,即可根据充分条件,必要条件的定义求出.【详解】设,根据图象可知,,再由,取,∴.将函数的图象向右平移个单位长度,得到函数的图象,∴.,,令,则,显然,∴是的必要不充分条件.故选:B.【点睛】本题主要考查利用图象求正(余)弦型函数的解析式,三角函数的图形变换,二倍角公式的应用,充分条件,必要条件的定义的应用,意在考查学生的数学运算能力和逻辑推理能力,属于中档题.6.B【解析】
根据复数的除法法则计算,由共轭复数的概念写出.【详解】,,故选:B【点睛】本题主要考查了复数的除法计算,共轭复数的概念,属于容易题.7.A【解析】
由圆心到渐近线的距离等于半径列方程求解即可.【详解】双曲线的渐近线方程为y=±22x,圆心坐标为(3,0).由题意知,圆心到渐近线的距离等于圆的半径r,即r=±答案:A【点睛】本题考查了双曲线的渐近线方程及直线与圆的位置关系,属于基础题.8.B【解析】
先求出,再利用求出,再求.【详解】解:由,所以,,,故选:B【点睛】考查向量的数量积及向量模的运算,是基础题.9.A【解析】
利用复数除法运算化简,由此求得对应点所在象限.【详解】依题意,对应点为,在第一象限.故选A.【点睛】本小题主要考查复数除法运算,考查复数对应点的坐标所在象限,属于基础题.10.C【解析】
根据函数的对称性和单调性的特点,利用排除法,即可得出答案.【详解】A中,当时,,所以不关于直线对称,则错误;B中,,所以在区间上为减函数,则错误;D中,,而,则,所以不关于直线对称,则错误;故选:C.【点睛】本题考查函数基本性质,根据函数的解析式判断函数的对称性和单调性,属于基础题.11.C【解析】
本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,,则.故选C.【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.12.B【解析】
利用复数的运算法则、虚部的定义即可得出【详解】,则复数z的虚部为.故选:B.【点睛】本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.20【解析】
根据系统抽样的定义将56人按顺序分成4组,每组14人,则1至14号为第一组,15至28号为第二组,29号至42号为第三组,43号至56号为第四组.而学号6,34,48分别是第一、三、四组的学号,所以还有一个同学应该是15+6-1=20号,故答案为20.14.【解析】
问题转化为求直线与圆有公共点时,的取值范围,利用数形结合思想能求出结果.【详解】解:直线,点,,直线上存在点满足,的轨迹方程是.如图,直线与圆有公共点,圆心到直线的距离:,解得.实数的取值范围为.故答案为:.【点睛】本题主要考查直线方程、圆、点到直线的距离公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,属于中档题.15.【解析】
由偶函数的性质直接求解即可【详解】.故答案为【点睛】本题考查函数的奇偶性,对数函数的运算,考查运算求解能力16.【解析】
设的中心为,矩形的中心为,过作垂直于平面的直线,过作垂直于平面的直线,得到直线与的交点为几何体外接球的球心,结合三角形的性质,求得球的半径,利用表面积公式,即可求解.【详解】设的中心为,矩形的中心为,过作垂直于平面的直线,过作垂直于平面的直线,则由球的性质可知,直线与的交点为几何体外接球的球心,取的中点,连接,,由条件得,,连接,因为,从而,连接,则为所得几何体外接球的半径,在直角中,由,,可得,即外接球的半径为,故所得几何体外接球的表面积为.故答案为:.【点睛】本题主要考查了空间几何体的结构特征,以及多面体的外接球的表面积的计算,其中解答中熟记空间几何体的结构特征,求得外接球的半径是解答的关键,着重考查了空间想象能力与运算求解能力,属于中档试题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见解析(2)【解析】
(1)证明平面即平面平面得证;(2)分别以所在直线为x轴,y轴.轴,建立如图所示的空间直角坐标系C-xyz,再利用向量方法求二面角的余弦值.【详解】(1)证明:因为平面ABC,所以因为.所以.即又.所以平面因为平面.所以平面平面(2)解:由题可得两两垂直,所以分别以所在直线为x轴,y轴.轴,建立如图所示的空间直角坐标系C-xyz,则,所以设平面的一个法向量为,由.得令,得又平面,所以平面的一个法向量为.所以二面角的余弦值为.【点睛】本题主要考查空间几何位置关系的证明,考查二面角的计算,意在考查学生对这些知识的理解掌握水平.18.(1);(2)①证明见解析;②证明见解析【解析】
(1)解方程即可;(2)①设直线,,,将点的坐标用表示,证明即可;②分别用表示,,的面积即可.【详解】(1)解之得:的标准方程为:(2)①,,设直线代入椭圆方程:设,,,直线,直线,,,,,.②,所以.【点睛】本题考查了直接法求椭圆的标准方程、直线与椭圆位置关系中的定值问题,在处理此类问题一般要涉及根与系数的关系,本题思路简单,但计算量比较大,是一道有一定难度的题.19.(1),,,.(2);证明见解析.(3)证明见解析.【解析】
(1)根据好集合的定义列举即可得到结果;(2)设,其中,由知;由可知或,分别讨论两种情况可的结果;(3)记,则,设,由归纳推理可求得,从而得到,从而得到,可知存在元素满足题意.【详解】(1),,,.(2)设,其中,则由题意:,故,即,考虑,可知:,或,若,则考虑,,,则,,但此时,,不满足题意;若,此时,满足题意,,其中为相异正整数.(3)记,则,首先,,设,其中,分别考虑和其他任一元素,由题意可得:也在中,而,,,对于,考虑,,其和大于,故其差,特别的,,,由,且,,以此类推:,,此时,故中存在元素,使得中所有元素均为的整数倍.【点睛】本题考查集合中的新定义问题的求解,关键是明确已知中所给的新定义的具体要求,根据集合元素的要求进行推理说明,对于学生分析和解决问题能力、逻辑推理能力有较高的要求,属于较难题.20.(1)单调递增区间是(0,e),单调递减区间是(e,+∞)(2)【解析】
(1)化简函数h(x),求导,根据导数和函数的单调性的关系即可求出(2)函数f(x)恰有两个极值点x1,x2,则f′(x)=lnx﹣mx=0有两个正根,由此得到m(x2﹣x1)=lnx2﹣lnx1,m(x2+x1)=lnx2+lnx1,消参数m化简整理可得ln(x1x2)=ln•,设t,构造函数g(t)=()lnt,利用导数判断函数的单调性,求出函数的最大值即可求出x1•x2的最大值.【详解】(1)令m=2,函数h(x),∴h′(x),令h′(x)=0,解得x=e,∴当x∈(0,e)时,h′(x)>0,当x∈(e,+∞)时,h′(x)<0,∴函数h(x)单调递增区间是(0,e),单调递减区间是(e,+∞)(2)f(x)=u(x)﹣v(x)=xlnxx+1,∴f′(x)=1+lnx﹣mx﹣1=lnx﹣mx,∵函数f(x)恰有两个极值点x1,x2,∴f′(x)=lnx﹣mx=0有两个不等正根,∴lnx1﹣mx1=0,lnx2﹣mx2=0,两式相减可得lnx2﹣lnx1=m(x2﹣x1),两式相加可得m(x2+x1)=lnx2+lnx1,∴∴ln(x1x2)=ln•,设t,∵1e,∴1<t≤e,设g(t)=()lnt,∴g′(t),令φ(t)=t2﹣1﹣2tlnt,∴φ′(t)=2t﹣2(1+lnt)=2(t﹣1﹣lnt),再令p(t)=t﹣1﹣lnt,∴p′(t)=10恒成立,∴p(t)在(1,e]单调递增,∴φ′(t)=p(t)>p(1)=1﹣1﹣ln1=0,∴φ(t)在(1,e]单调递增,∴g′(t)=φ(t)>φ(1)=1﹣1﹣2ln1=0,∴g(t)在(1,e]单调递增,∴g(t)max=g(e),∴ln(x1x2),∴x1x2故x1•x2的最大值为.【点睛】本题考查了利用导数求函数的最值和最值,考查了函数与方程的思想,转化与化归思想,属于难题21.(1);(2)证明见详解,【解析】
(1)根据,可得,然后作差,可得结果.(2)根据(1)的结论,用取代,得到新的式子,然后作差,可得结果,最后根据等比数列的前
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学计算机协会工作计划
- 2025年幼儿园教研工作计划例文
- 部门工作计划范文
- 数学老师课堂教学任务计划
- 2025德育工作计划小学
- 小学第一学期班主任的教学工作计划范文
- 职高班主任年度工作计划
- 《蜗杆传动改》课件
- 《母亲的教诲胡适》课件
- 2020版 沪教版 高中音乐 必修1 音乐鉴赏 上篇《第四单元 黄钟大吕》大单元整体教学设计2020课标
- 做好计划管理-杜绝虚假繁忙-陈春花老师
- 船舶加油作业安全操作规程
- 重庆市两江新区八年级(上)期末语文试卷(含解析)
- 七人学生小品《如此课堂》剧本台词手稿
- 出境竹木草制品公司不合格产品召回制度
- POWERPOINT教学案例优秀6篇
- RFJ05-2009-DQ人民防空工程电气大样图集
- 建筑物理课后习题参考
- 部编版道德与法治三年级下册第一单元《我和我的同伴》大单元作业设计案例
- 2023届四省联考“谚语看似矛盾”的作文讲评+课件
- 研一考试文件内科学进展习题
评论
0/150
提交评论