计量经济学-时间序列_第1页
计量经济学-时间序列_第2页
计量经济学-时间序列_第3页
计量经济学-时间序列_第4页
计量经济学-时间序列_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(二)图形分析

通过对样本数据做散点图(图1、图2)发现,匕与&、后呈近似直线关系,根据图3

的趋势图,三者同趋势变化,考虑时间序列模型,初步判断其不平稳,存在二阶可能性。于

是得到该模型的理论方程为:

YFBB2X21+u$(1)

式中,〃,为随机误差项,描述变量外的因素对模型的干扰;历为样本回归函数的截距

系数;氏、氏为样本回归函数的斜率系数;下标t为年份,t二1990,1991,…,2010o

图1丫与X1散点图图2丫与X2散点图

图3趋势图

(三)单位根检验

表2单位根检验表

变量检验方程ADF值P平稳性阶数

匕(c,t,2)3.3191.0000不平稳

(c,0,4)2.7330.9999不平稳

(0,0.4)2.8550.9973不平稳

△匕(c,t,3)-1.6680.7178不平稳

(c,0.2)2.1570.9997不平稳

(0,0,2)3.6670.9996不平稳

△2K(c,t,1)-5.9240.0010平稳〜I⑵

x,t(c,t,4)0.9440.9995不平稳

(c,0,4)3.4051.0000不平稳

(0.0.4)3.4480.9992不平稳

△乂(c,t,3)-2.0790.5178不平稳

(c.0.4)0.7570.9891不平稳

(0,0,4)1.2740.9404不平稳

△2Zt(c,t,4)-3.9630.0381平稳〜I⑶

(c,t,4)不平稳

x2t4.9971.0000

(c,0,0)8.6581.0000不平稳

(0.0.0)14.1741.0000不平稳

△公(c,t,0)-2.4860.3303不平稳

(c,0.4)2.9261.0000不平稳

(0,0,4)2.8920.9974不平稳

(c,t,1)-4.8750.0063平稳〜I⑶

经过差分后,匕与%r、公均平稳,但是匕为二阶单整,九、照三阶单整,可能存在线性后

降阶,因此可以尝试建立回归模型。

(四)建立回归模型

1.LSYCX1X2

得到方程:Y=-3725.7829016+0.350915608536*X1+0.116993116659*X2

t:(-4.260)(8.438)(2.180)

〃二0.998,DW=0.678,F=6857.838

[=]Equation:UNBTLEDWorkfileUNHTLED::Untitled\_BX

[view|PfocjObject|Print[Name[Freeze]〔Estimate〔Forecast卜atts〔Resid;

DependentVariable:Y

Method:LeastSquares

Date:12/16/15Time:20:36

Sample:19902010

Includedobservations:21

VariableCoefficientStd.Errort-StatlstlcProb.

c-3725783874.6747-4.2596210.0005

X10.3509160.0415858/384400.0000

X20.1169930.0536572.1803920.0427

R-squared0998689Meandependentvar5553603

AdjustedR-squared0.998544S.D.dependentvar48890.05

S.E.ofregression1865.701Akaikeinfocriterion18.03222

3umsquaredresid6265512GSchwarzcriterion18.18144

Loglikelihood-186.3384Hannan-Quinncriter.1806461

F-statistic6857.838Durbin-Watsonstat0.678223

ProD(F-statistic)0.000000

图4第一次模型

2.自相关性检验

(1)残差图分析:

[=1Equation:UNTITLEDWorkfile:UNTITLED::Untitled\-OX

|viewkroc[objed]〔Print[Name〔Freeze]〔Estimate[Forecast]StatsResids

图5残差图

(2)DW检验:

a=0.05,k=2,查表得到出=1.125,因为DW=0.678小于小,因此存在一阶自相关性,

(=]Equation:UNBTLEDWorkfileUNTTTLED::Untitled\_BX

[view]pfoc[objed|PrintjName|FreezejEstimate|ForecastJstatS^Resid£

DependentVarable:Y

Method:LeastSquares

Date:12/16/15Time:20:36

Sample:19902010

Includedobservations:21

VariableCoeffiaentStd.Errort-SlatistlcProb.

C-3725783874.6747-4.2596210.0005

X10.3509160.0415858.4384400.0000

X20.1169930.0536572.1803920.0427

R-squared0998689Meandependentvar5553603

AdjustedR-sqiared0.998544S.D.dependentvar48890.05

S.E.ofregression1865.701Akaikeinfocriterion18.03222

Sumsquaredresid62655126Schwarzcriterion18.18144

Loglikelihood-186.3384Hannan-Quinncriter.1806461

F-statistic6857.838Durbin-Watsonstat0.678223

Prob(F-statistic)0.000000

图6DW检验

(3)偏相关系数检验:

[=]Equation:UNITTLEDWorkfile:UNKTLED::Untitled\-BX

|View|ProcObject(PrintNameFreeze।EstimateForecastStatsResids

CorrelooramofResiduals

Date:12/16/15Time:21:50

Sample:19902010

Includedobservations:21

AutocorrelationPartialCorrelationACPACQ-StatProb

i____IiI____110.5990.5998.66310.003

।Zl।।□।20.252-0.16610.2780.006

।匚।U।3-0.157-0.37410.9370.012

[=।i匚i4-0.460-0.30016.9610.002

[1।115-0.4570.06023.2640.000

1匚1।]।6-0.2730.11125.6690.000

11।]'70.0140.08225.6750.001

1Zl1।1180.226-0.04227.5780.001

1=]1।L।90.270-0.10030.5180.000

1ZJ•।□1100.148-0.10631.4830.000

111।।11-0.045-0.03531,5800.001

।d1।l|112-0.220-0.03534.1860.001

图7偏相关洗漱检验

由图可见,当绝对值PAC大于0.5时,即超出PC图中虚线部分时,存在一阶自相关性。

(4)BG检验:

[=]Equation:UNITTLEDWorkfile:UNTITLED::Untitled\_BX

View[ProcObject|PrintName[Freeze|EstimateIForecast।StatsResids

Breusch-GcdfreySerialCorrelationLMTest:*

F-statistic5.257218Prob.F(2,16)0.0176

Obs,R-squared8.327658Prob.Chi-Square(2)0.0155

TestEquation:

Dependentvariable:RESID

Method:LeastSquares

Date:12/16/15Time:21:58

Sample:19902010

Includedobsen/ations:21

Presamplemissingvaluelaggedresidualssettozero.

VariableCoefficientStd.Errort-StatisticF—

C-250.0119794.3014-0.3147570.7570

X10.0125940.0379270.3320610.7442

X2-0.0151200.048329-0.3128610.7584

RESID(-1)0.7059900.2490152.8351290.0119

RESID(-2)-0.1043010.289007-0.3608950.7229

R-squared0396555Meandependentvar143E-12

AdjustedR-squared0.245694S.D.dependentvar1769.959

S.E.ofregression1537.224Akaikeinfocriterion17.71760

Sumsquaredresid37808914Sctiwarzcrilerion17.96630

Loglikelihood-181.0348Hannan-Quinncriter.17.77157

F-statistic2.628609Durbin-Watsonstat1.928180

Prob(F-statistic)0.073365

图8BG检验

nRJ8.3277,临界概率0.0155小于0.05,因此拒绝假设H。,存在自相关性。又因为ei

回归系数显著不为0,因此模型存在一阶自相关性。

3.自相关性处理

得到调整后的方程:

Y=-5417.76973503+0.390265879342*X1+0.0736268142467*X2+[AR(1)=0.668162678879]

简化后:

Y=-5417.77+0.39*Xi+0.07*X2+[AR(1)=0.67]

t=(11.594)(1.755)(3.759)

口;0.999,DW-1.953,F-7829.251

(=)Equation:UNTITLEDWorkfile:UNTnLED::Untitled\_nX

(ViewProcObject|PrintNameFreezeEstimateForecastStatsResids

DependentVariable:Y

Method:LeastSquares

Date:12/16/15Time:22:10

Sample(adjusted):19912010

Includedobservations:20afteradjustments

Convergenceachievedafter7iterations

VariableCoefficientStd.Errort-StatisticProb.

C-5417.7701808.200-2.9962230.0085

X10.3902660.03366211.593680.0000

X20.0736270.0419591.7547510.0984

AR(1)0.6681630.1777433.7591550.0017

R-squared0.999319Meandependentvar58018.42

AdjustedR-squared0.999192S.D.dependentvar48783.41

S.E.ofregression1387.012Akaikeinfocriterion17.48455

Sumsquaredresid30780858Sciiwarzcriterion17.68369

Loglikelihood-170.8455Hannan-Quinncriter.17.52342

F-statistic7829.251Durbin-Watsonstat1.952757

Prob(F-statistic)0.000000

InvertedARRoots.67

图9调整后方程

4.调整后自相关性检验

(1)调整后偏相关系数检验:

[=1Equation:UNTITLEDWorkfile:UNHTLED::Untitled\_□X

[viewProc|Object]Print

NameFreeze|EstimateForecastStatsResids

CorrelogramofResiduals

Date:12/17/15Time:15:10

Sample:19912010

Includedobservations:20

Q-statisticprobabilitiesadjustedfor1ARMAterm(s)

AutocorrelationPartialCorrelationACPACQ-StatProb

'I'1111-0.001-0.0014.E-05

।□।I3120.1900.1900.87960.348

'匚••匚13-0.277-0.2872.87040.238

'[=।1二14-0.337-0.4055.99630.112

'匚।1匚15-0.340-0.3219.38300.052

•匚••匚16-0.199-0.26210.6280.059

III«E।70.058-0.13710.7430.097

IZ]I11180.234-0.03412.7530.078

I=]I11190.287-0.03516.0480.042

I□I•C1100.180-0.11017.4710.042

IIIIC1110.040-0.11217.5480.063

II1112-0.101-0.05218.1130.079

图10调整后偏相关系数检验

经调整,PC图中不存在超出虚线部分,说明自相关性已消除。

(2)调整后BG检验:

[=]Equation:UNTITLEDWorkfile:UNTITLED::Untitled\-0X

ViewProcObjectPrintNameFreeze||EstimateForecastStatsResids

Breusch-GodfreySerialCorrelationLMTest

F-statistic6.14E-05Prob.F(1,15)0.9939

Obs*R-squared8.19E-05Prob.Chi-Square(l)0.9928

TestEquation:

DependentVariable:RESID

Method:LeastSquares

Date:12/17/15Time:15:16

Sample:19912010

Includedobservations:20

Presamplemissingvaluelaggedresidualssettozero.

VariableCoefficientStd.Errort-StatisticProb.

C-9.2827302211.779-0.0041970.9967

X18.27E-050.0363340.0022770.9982

X2-5.96E-050.043997-0.0013550.9989

AR⑴0.0016860.2828990.0059600.9953

RESID(-1)-0.0031350.400070-0.0078350.9939

R-squared0.000004Meandependentvar-1.33E-07

AdjustedR-squared-0.266661S.D.dependentvar1272.810

S.E.ofregression1432.497Akaikeinfocriterion17.58454

Sumsquaredresid30780732Schwarzcriterion17.83348

IAHlilrQlihnn/i-170JMA/IU-lonnonlinnrritor17AQQ44

图11调整后BG检验

因为*2的临界概率0.9928已经非常大,大于0.05,因此接受假设H。,不存在自相关性。

5.异方差检验:

[=JEquation:UNTITLEDWorkfile:UNTITLED::Untitled\_n1

View|ProcObject|PrintNameFreezeEstimateForecastStatsResids

HeteroskedastidtyTest:White

F-statistic3.685659Prob.F(9.10)0.0271

Obs'R-squared15.36725Prob.Chi-Square(9)0.0813

ScaledexplainedSS6.010028Prob.Chi-Square(9)0.7389

TestEquation:

DependentVariable:RESIDE

Method:LeastSquares

Date:12/17/15Time:14:50

Sample:19912010

Includedobservations:20

Collineartestregressorsdroppedfromspecification

图12WHITE检验

因为显著性水平a=0.05,nR?的概率0.0813大于0.05,落入接受域,原假设成立

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论