2020-2021学年上海市松江区九年级(上)期中数学试卷-解析版_第1页
2020-2021学年上海市松江区九年级(上)期中数学试卷-解析版_第2页
2020-2021学年上海市松江区九年级(上)期中数学试卷-解析版_第3页
2020-2021学年上海市松江区九年级(上)期中数学试卷-解析版_第4页
2020-2021学年上海市松江区九年级(上)期中数学试卷-解析版_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2020-2021学年上海市松江区九年级(上)期中数学试卷一、选择题(本大题共6题,每题4分,满分24分)1.下列各组线段中,能组成比例线段的()A.2,3,4,5 B.2,3,4,6 C.2,3,5,7 D.3,4,5,62.下列图形中一定相似的是()A.两个等腰三角形 B.两个菱形 C.两个直角三角形 D.两个正方形3.在Rt△ABC中,∠C=90°,AC=12,BC=5,那么下列各式中正确的是()A.tanA= B.cotA= C.sinA= D.cosA=4.已知△ABC中,D、E分别是边AB、AC上的点,下列各式中,不能判断DE∥BC的是()A.= B.= C.= D.=5.已知、和都是非零向量,在下列选项中,不能判定∥的是()A.=2 B.∥,∥ C.||=|| D.=,=26.如图,在梯形ABCD中,AD∥BC,BC=2AD,对角线AC与BD相交于点O,把△ABO、△BCO、△COD、△DOA的面积分别记作S1、S2、S3、S4,那么下列结论中,不正确().A.S2=2S1 B.S1=S3 C.S2=2S4 D.S3=2S4二、填空题(本大题共12题,每题4分,满分48分)7.若==≠0,则=.8.在比例尺为1:1000000的地图上,量得两地间的距离为3厘米,那么两地间的实际距离是千米.9.已知两相似三角形的对应中线的比是2:3,其中较大的三角形的面积为27,则较小的三角形的面积是.10.如果线段a=4cm,b=9cm,那么它们的比例中项是cm.11.已知点M是线段AB的黄金分割点(AM>MB),如果AB=6cm,那么AM=cm.12.如图,G是△ABC的重心,过点G作EF∥BC,分别交AB、AC于点E、F,若BC=6,则EF=.13.如图,梯形ABCD中,点E、F分别在AB、DC边上,AD∥BC∥EF,BE:EA=1:2,若FC=2.5,则FD=.14.在△ABC中,点D、E分别在边AB、AC上,DE∥BC,DE:BC=1:3,AD=2,则BD=.15.在平面直角坐标系xOy中有一点A(3,4),如果OA与x轴正半轴的夹角为α,那么sinα=.16.如图,已知在△ABC中,∠ABD=∠C,AD=9,CD=7,那么AB=.17.如图,在平行四边形ABCD中,点F是CD的中点,BF和AC交于点E.如果=,=,如果用、表示,那么=.18.如图,在△ABC中,D是AC边的中点,连接BD,把△BDC沿BD翻折,得到△BDC′,联结AC′.若AD=AC′=2,BD=3,则点D到BC′的距离为.三、解答题(本大题共7题,满分78分)19.(10分)计算:cos245°﹣+cot230°.20.(10分)如图,已知两个不平行的向量、,先化简,再求作.2(2﹣)﹣3(+).(不要求写作法,但要指出图中表示结论的向量)21.(10分)已知:如图,在△ABC中,AB=6,BC=8,∠B=60°.求:(1)△ABC的面积;(2)∠C的余弦值.22.(10分)△ABC是一块直角三角形余料,∠C=90°,AC=8cm,BC=6cm,如图将它加工成正方形零件,试说明哪种方法利用率高?(得到的正方形的面积较大)23.(12分)已知:如图,BF、CE分别是△ABC的边AC、AB上的高,BF与CE相交于点O,AN是∠BAC的角平分线,交EF于点M,交BC于点N.(1)求证;△ABF∽△ACE;(2)求证:=.24.(12分)已知如图,D是△ABC的边AB上一点,DE∥BC,交边AC于点E,延长DE至点F,使EF=DE,联结BF,交边AC于点G,联结CF(1)求证:=;(2)如果CF2=FG•FB,求证:CG•CE=BC•DE.25.(14分)如图,在△ABC中,AB=AC=20,tanB=,点D为BC边上的动点(点D不与点B、C重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E.(1)如图2,当ED∥AB时,求AE的长;(2)设BD=x,AE=y,求y关于x的函数解析式,并写出定义域;(3)当△ADE是等腰三角形时,直接写出线段BD的长.

2020-2021学年上海市松江区九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.下列各组线段中,能组成比例线段的()A.2,3,4,5 B.2,3,4,6 C.2,3,5,7 D.3,4,5,6【分析】判定四条线段是否成比例,只要把四条线段按大小顺序排列好,判断前两条线段之比与后两条线段之比是否相等即可.【解答】解:A、2×5≠3×4,不成比例;B、2×6=3×4,成比例;C、2×7≠3×5,不成比例;D、3×6≠4×5,不成比例;故选:B.2.下列图形中一定相似的是()A.两个等腰三角形 B.两个菱形 C.两个直角三角形 D.两个正方形【分析】根据相似图形的定义,对选项进行一一分析,排除错误答案.【解答】解:A、两个等腰三角形,属于形状不唯一确定的图形,不一定相似,故错误;B、两个菱形,属于形状不唯一确定的图形,不一定相似,故错误;C、两个直角三角形,属于形状不唯一确定的图形,不一定相似,故错误;D、两个正方形,图形的形状相同,但大小不一定相同,符合相似性的定义,故正确.故选:D.3.在Rt△ABC中,∠C=90°,AC=12,BC=5,那么下列各式中正确的是()A.tanA= B.cotA= C.sinA= D.cosA=【分析】根据勾股定理求出AB,根据锐角三角函数的定义计算,判断即可.【解答】解:在Rt△ABC中,∠C=90°,AC=12,BC=5,由勾股定理得,AB==13,则tanA==,A选项计算正确;cotA==,B选项计算错误;sinA==,C选项计算错误;cosA==,D选项计算错误;故选:A.4.已知△ABC中,D、E分别是边AB、AC上的点,下列各式中,不能判断DE∥BC的是()A.= B.= C.= D.=【分析】若使DE∥BC,则其对应边必成比例,进而依据对应边成比例即可判定DE∥BC.【解答】解:如图,若使线段DE∥BC,则其对应边必成比例,即=,=,=,故B选项答案错误;故选:B.5.已知、和都是非零向量,在下列选项中,不能判定∥的是()A.=2 B.∥,∥ C.||=|| D.=,=2【分析】根据平行向量的判定一一判断即可;【解答】解:A、由=2,可以推出∥.本选项不符合题意;B、由∥,∥,可以推出∥.本选项不符合题意;C、由||=||,不可以推出∥.本选项符合题意;D、由=,=2,可以推出∥.本选项不符合题意;故选:C.6.如图,在梯形ABCD中,AD∥BC,BC=2AD,对角线AC与BD相交于点O,把△ABO、△BCO、△COD、△DOA的面积分别记作S1、S2、S3、S4,那么下列结论中,不正确().A.S2=2S1 B.S1=S3 C.S2=2S4 D.S3=2S4【分析】由AD∥BC,推出△AOD∽△COB,推出===,利用等高模型以及相似三角形的性质解决问题即可.【解答】解:∵AD∥BC,∴△AOD∽△COB,∴===,∴S△BOC=2S△AOB=2S△ODC,S△DOC=2S△AOD,=()2=,∴选项A,B,D正确,故选:C.二、填空题(本大题共12题,每题4分,满分48分)7.若==≠0,则=.【分析】设===k≠0,得出x=2k,y=5k,z=4k,再代入要求的式子进行计算即可得出答案.【解答】解:设===k≠0,则x=2k,y=5k,z=4k,则==;故答案为:.8.在比例尺为1:1000000的地图上,量得两地间的距离为3厘米,那么两地间的实际距离是30千米.【分析】根据比例尺=图上距离:实际距离,可知实际距离=图上距离÷比例尺.【解答】解:根据题意,3÷=3000000厘米=30千米.即实际距离是30千米.故答案为:30.9.已知两相似三角形的对应中线的比是2:3,其中较大的三角形的面积为27,则较小的三角形的面积是12.【分析】根据相似三角形的性质得到两相似三角形的面积比是4:9,根据题意列式计算即可.【解答】解:∵两相似三角形的对应中线的比是2:3,∴两相似三角形的相似比是2:3,∴两相似三角形的面积比是4:9,∵较大的三角形的面积为27,∴较小的三角形的面积为:27×=12,故答案为:12.10.如果线段a=4cm,b=9cm,那么它们的比例中项是6cm.【分析】根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负.【解答】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.所以c2=4×9,x=±6,(线段是正数,负值舍去),故答案为:6.11.已知点M是线段AB的黄金分割点(AM>MB),如果AB=6cm,那么AM=(3﹣3)cm.【分析】根据黄金分割点的定义,知AM是较长线段;则AM=AB,代入数据即可得出AM的长.【解答】解:∵M是线段AB的黄金分割点(AM>MB),AB=6cm,∴AM=AB=×6=(3﹣3)cm,故答案为:(3﹣3).12.如图,G是△ABC的重心,过点G作EF∥BC,分别交AB、AC于点E、F,若BC=6,则EF=4.【分析】如图,连接AG并延长,交BC于点P,由三角形的重心的性质可知AG=2GP,则AG:AP=2:3.又EF∥BC,根据相似三角形的判定可知△AGF∽△APC,得出AF:AC=2:3,最后由EF∥BC,得出△AEF∽△ABC,从而求出EF:BC=AF:AC=2:3,结合BC=6可求EF的长度.【解答】解:如图,连接AG并延长,交BC于点P.∵G为△ABC的重心,∴AG=2GP,∴AG:AP=2:3,∵EF过点G且EF∥BC,∴△AGF∽△APC,∴AF:AC=AG:AP=2:3,又∵EF∥BC,∴△AEF∽△ABC,∴,∵BC=6,∴EF=4.13.如图,梯形ABCD中,点E、F分别在AB、DC边上,AD∥BC∥EF,BE:EA=1:2,若FC=2.5,则FD=5.【分析】根据AD∥BC∥EF,BE:EA=1:2,可得出FC:FD=1:2,再根据FC=2.5,即可得出FD的长度.【解答】解:∵AD∥BC∥EF,BE:EA=1:2,∴FC:FD=1:2,∵FC=2.5,∴FD=5.故答案为5.14.在△ABC中,点D、E分别在边AB、AC上,DE∥BC,DE:BC=1:3,AD=2,则BD=4.【分析】由DE∥BC可判定△ADE∽△ABC,从而可得比例式,结合DE:BC=1:3,可求得AB的值,最后根据BD=AB﹣AD计算即可.【解答】解:依题意画出图形,如图:在△ABC中,DE∥BC,∴△ADE∽△ABC,∴=,∵DE:BC=1:3,∴=,∵AD=2,∴AB=6,∴BD=AB﹣AD=6﹣2=4.故答案为:4.15.在平面直角坐标系xOy中有一点A(3,4),如果OA与x轴正半轴的夹角为α,那么sinα=.【分析】根据勾股定理和A(3,4),可得OA的长,根据OA与x轴正半轴的夹角为α,可得sinα的值.【解答】解:∵A(3,4),∴OA==5,∴sinα=.故答案为:.16.如图,已知在△ABC中,∠ABD=∠C,AD=9,CD=7,那么AB=12.【分析】首先由在△ABC中,∠ABD=∠C,可以证明△ABD∽△ACB,然后利用相似三角形的性质和已知条件即可求解.【解答】解:∵在△ABC中,∠ABD=∠C,而∠A公共,∴△ABD∽△ACB,∴AB2=AD•AC,而AD=9,CD=7,∴AC=16,∴AB=12.17.如图,在平行四边形ABCD中,点F是CD的中点,BF和AC交于点E.如果=,=,如果用、表示,那么=(+).【分析】根据平行四边形的性质和平行线截线段成比例求得AE线段的长度,结合平行四边形法则求得即可.【解答】解:∵点F是CD的中点,∴FC=DC.又∵在平行四边形ABCD中,CD∥AB,CD=AB,∴=,即==,∴AE=AC.∵=,=,∴=+=+,∴==(+),故答案是:(+).18.如图,在△ABC中,D是AC边的中点,连接BD,把△BDC沿BD翻折,得到△BDC′,联结AC′.若AD=AC′=2,BD=3,则点D到BC′的距离为.【分析】连接CC',交BD于点M,过点D作DH⊥BC'于点H,由翻折知,△BDC≌△BDC',BD垂直平分CC',证△ADC'为等边三角形,利用解直角三角形求出DM=1,C'M=DM=,BM=2,在Rt△BMC'中,利用勾股定理求出BC'的长,在△BDC'中利用面积法求出DH的长,则可得出答案.【解答】解:如图,连接CC',交BD于点M,过点D作DH⊥BC'于点H,∵AD=AC′=2,D是AC边上的中点,∴DC=AD=2,由翻折知,△BDC≌△BDC',BD垂直平分CC',∴DC=DC'=2,BC=BC',CM=C'M,∴AD=AC′=DC'=2,∴△ADC'为等边三角形,∴∠ADC'=∠AC'D=∠C'AC=60°,∵DC=DC',∴∠DCC'=∠DC'C=×60°=30°,在Rt△C'DM中,∠DC'C=30°,DC'=2,∴DM=1,C'M=DM=,∴BM=BD﹣DM=3﹣1=2,在Rt△BMC'中,BC'===,∵S△BDC'=BC'•DH=BD•CM,∴DH=3×,∴DH=,∵∠DCB=∠DBC',∴点D到BC的距离为.故答案为:.三、解答题(本大题共7题,满分78分)19.(10分)计算:cos245°﹣+cot230°.【分析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.【解答】解:原式=()2﹣+()2=﹣+3=.20.(10分)如图,已知两个不平行的向量、,先化简,再求作.2(2﹣)﹣3(+).(不要求写作法,但要指出图中表示结论的向量)【分析】根据平面向量的加法法则计算即可,利用三角形法则画出图形即可.【解答】解:2(2﹣)﹣3(+)=4﹣2﹣3﹣=﹣3.如图,即为所求.21.(10分)已知:如图,在△ABC中,AB=6,BC=8,∠B=60°.求:(1)△ABC的面积;(2)∠C的余弦值.【分析】(1)根据题意作AD⊥BC于点D,然后根据题目中的条件可以求得AD的长,从而可以求得△ABC的面积;(2)根据题意和(1)中的条件可以求得CD和AC的,从而可以求得∠C的余弦值.【解答】解:(1)作AD⊥BC于点D,∵在△ABC中,AB=6,BC=8,∠B=60°,∴∠ADB=90°,∠BAD=30°,∴BD=3,∴AD=3,∴△ABC的面积是:;(2)由(1)知∠ADC=90°,BD=3,AD=3,∵BC=8,∴CD=5,∴AC=2,∴cos∠C=.22.(10分)△ABC是一块直角三角形余料,∠C=90°,AC=8cm,BC=6cm,如图将它加工成正方形零件,试说明哪种方法利用率高?(得到的正方形的面积较大)【分析】由勾股定理求得AB,所截的正方形的边在△ABC的直角边上,如图1,设正方形CDEF边长为x,则DE=CD=x,BD=BC﹣CD=6﹣x,先证明△BDE∽△BCA,于是可利用相似比求得x=cm;当所截的正方形的边在△ABC的斜边上,如图2,作CH⊥AB于H,交MQ于J,先利用面积法计算出CH=cm,设正方形MNPQ边长为x,则QM=x,BJ=﹣x,证明△CMQ∽△CBA,则可利用相似比计算出x=cm,然后比较两个正方形的边长的大小来判断哪种方法利用率高.【解答】解:当所截的正方形的边在△ABC的直角边上,如图1,设正方形CDEF边长为x,则DE=xcm,BD=BC﹣CD=(6﹣x)cm,∵DE∥AC,∴△BDE∽△BCA,∴=,即=,解得:x=(cm),即正方形BDEF边长为cm;当所截的正方形的边在△ABC的斜边上,如图2,作CH⊥AB于H,交MQ于J,则MN∥CH,AB===10,∵CH•AB=AC•BC∴CH==(cm),设正方形MNPQ边长为x,则QM=x,BJ=﹣x,∵QM∥AB,∴△CMQ∽△CBA,∴=,即=,解得:x=(cm),即正方形BDEF边长为(cm);∵=>,∴图1利用率高.23.(12分)已知:如图,BF、CE分别是△ABC的边AC、AB上的高,BF与CE相交于点O,AN是∠BAC的角平分线,交EF于点M,交BC于点N.(1)求证;△ABF∽△ACE;(2)求证:=.【分析】(1)由“有两个角分别相等的三角形相似“来判定即可;(2)由△ABF∽△ACE可得比例式=,再结合夹角相等,可判定△EAF∽△CAB,从而可得=①,∠AEF=∠ACB;然后结合角平分线的定义可得∠EAM=∠CAN,则可判定△EAM∽△CAN,进而得出比例式=②,由①②可得结论.【解答】解:(1)证明:∵BF、CE分别是△ABC的边AC、AB上的高,∴BF⊥AC,CE⊥AB,∴∠AFB=∠AEC=90°,又∵∠CAE=∠BAF,∴△ABF∽△ACE;(2)证明:∵△ABF∽△ACE,∴=,∴=,又∵∠EAF=∠CAB,∴△EAF∽△CAB,∴=①,∠AEF=∠ACB,∵AN是∠BAC的角平分线,∴∠EAM=∠CAN,∴△EAM∽△CAN,∴=②,由①②可得:=.24.(12分)已知如图,D是△ABC的边AB上一点,DE∥BC,交边AC于点E,延长DE至点F,使EF=DE,联结BF,交边AC于点G,联结CF(1)求证:=;(2)如果CF2=FG•FB,求证:CG•CE=BC•DE.【分析】(1)首先证明△ADE∽△ABC,△EFG∽△CBG,根据相似三角形的对应边的比相等,以及DE=EF即可证得;(2)首先证明△CFG∽△BFC,证得=,∠FCE=∠CBF,然后根据平行线的性质证明∠FEG=∠CEF,即可证得△EFG∽△ECF,则==,即可证得=,则所证结论即可得到.【解答】证明:(1)∵DE∥BC,∴△ADE∽△ABC,△EFG∽△CBG,∴=,=,又∵DE=EF,∴=,∴=;(2)∵CF2=FG•FB,∴=,又∵∠CFG=∠CFB,∴△CFG∽△BFC,∴=,∠FCE=∠CBF,又∵DF∥BC,∴∠EFG=∠CBF,∴∠FCE=∠EFG,又∵∠FEG=∠CEF,∴△EFG∽△ECF,∴==,∴=,即CG•CE=BC•DE.25.(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论