欧洲央行-财务回报、情绪和市场波动动态评估Financial returns,sentiment and market volatility. A dynamic assessment_第1页
欧洲央行-财务回报、情绪和市场波动动态评估Financial returns,sentiment and market volatility. A dynamic assessment_第2页
欧洲央行-财务回报、情绪和市场波动动态评估Financial returns,sentiment and market volatility. A dynamic assessment_第3页
欧洲央行-财务回报、情绪和市场波动动态评估Financial returns,sentiment and market volatility. A dynamic assessment_第4页
欧洲央行-财务回报、情绪和市场波动动态评估Financial returns,sentiment and market volatility. A dynamic assessment_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

EUROPEANCENTRALBANK

EUROSYSTEM

WorkingPaperSeries

StefanoBorgioli,GiampieroM.Gallo,ChiaraOngari

Financialreturns,sentimentandmarketvolatility.Adynamic

assessment.

No2999

Disclaimer:ThispapershouldnotbereportedasrepresentingtheviewsoftheEuropeanCentralBank(ECB).TheviewsexpressedarethoseoftheauthorsanddonotnecessarilyreflectthoseoftheECB.

ECBWorkingPaperSeriesNo29991

Abstract

In1936,JohnMaynardKeynesproposedthatemotionsandinstinctsarepivotalin

decision-making,particularlyforinvestors.Bothpositiveandnegativemoodscaninfluencejudgmentsanddecisions,extendingtoeconomicandfinancialchoices.Intuitions,emotionalstates,andbiasessignificantlyshapehowpeoplethinkandact.Measuringmoodorsen-timentischallenging,butsurveysanddatacollectionmethods,suchasconfidenceindicesandconsensusforecasts,offersomesolutions.Recently,theavailabilityofwebdata,includ-ingsearchenginequeriesandsocialmediaactivity,hasprovidedhigh-frequencysentimentmeasures.Forexample,theItalianNationalStatisticalInstitute’sSocialMoodonEconomyIndex(SMEI)usesTwitterdatatoassesseconomicsentimentinItaly.Therelationshipbe-tweenSMEIandfinancialmarketactivity,specificallytheFTSEMIBindexanditsvolatility,isexaminedusingatrivariateVectorAutoregressivemodel,takingintoaccounttheimpactoftheCOVID-19pandemic.

Keywords:VAR,GrangerCausality,sentimentanalysis,financialmarket,forecastingJELCodes:C1,C32,C53,G4

ECBWorkingPaperSeriesNo29992

1Non-technicalsummary

Bothpositiveandnegativeemotionscanimpactjudgmentsandeconomicdecisions.Althoughmeasuringmoodorsentimentischallenging,toolslikesurveysandconfidenceindiceshelp.Infactonlinedata,suchassearchenginequeriesandsocialmediaactivity,providemorefrequentsentimentmeasurements.Forinstance,theItalianNationalStatisticalInstitutecreatedtheSocialMoodonEconomyIndex(SMEI)usingTwitterdatatogaugeeconomicsentimentinItaly.ThisstudyexaminestherelationshipbetweentheSMEIandfinancialmarketactivity,particularlytheFTSEMIBindex,usingamodelthatconsidersalsopossibleeffectsoftheCOVID-19pandemic.

Twomaindatasourcesareused:theSMEI,whichmeasuresdailyItalianeconomicsentimentthroughtweets,andtheFTSEMIB,whichrepresentstheperformanceof40majorItalianstocksandincludesvolatilitydata.TheanalysisusesVectorAuto-regressiveModels(VAR)tostudytherelationshipsbetweentheSMEI,FTSEMIBreturns,andvolatilityfromFebruary10,2016,toMarch8,2020.Grangercausalitytestsarethenconductedtodetermineifpastvaluesofonevariablecanpredictcurrentvaluesofanother,revealingpotentialbidirectionalinfluences.

“Evenapartfromtheinstabilityduetospeculation,thereistheinstabilityduetothecharac-teristicofhumannaturethatalargeproportionofourpositiveactivitiesdependonspontaneousoptimismratherthanonamathematicalexpectation,whethermoralorhedonisticoreconomic.Most,probably,ofourdecisionstodosomethingpositive,thefullconsequencesofwhichwillbedrawnoutovermanydaystocome,canonlybetakenasaresultofanimalspirits–ofaspontaneousurgetoactionratherthaninaction,andnotastheoutcomeofaweightedaverageofquantitativebenefitsmultipliedbyquantitativeprobabilities.”

JohnMaynardKeynes,GeneralTheoryOfEmployment,InterestAndMoney.

2Introduction

JohnMaynardKeynesintroducedasearlyas1936theideathatemotionsandinstincts(the“animalspirits”)ratherthanmererationalanalysis,playacrucialroleindecisionmaking,particularlyamonginvestors.

ECBWorkingPaperSeriesNo29993

Moods,betheynegativeorpositive,affectjudgmentanddecision-making,evenwhenpromptedbyunrelatedevents.Thisappliestoeconomicandfinancialdecisions,aswell:

Kahneman

(2011)

hasbecomethereferenceofchoiceonhowintuitions,emotionalstatus,andbiasesshapejudg-mentsandaffectthinking,behavior,anddecisions.Therefore,informationisnottheonlyfactoratplay,andrationalityisnotalwaysthemainenginebehindactions.

Ifthetheoreticalreasoningisclear,thewaymoodorsentimentaremeasuredissomewhatofachallenge;intheattempttoisolateanaggregateresult,severalsuggestionsarepresentedintheliterature.Oneoptionistoconductsurveysandcollectdataabouthoweconomicagentsjudgetheevolutionofthegeneraleconomicconditionsortheirown.Thisisthecase,forexample,ofthevariousconfidenceindices(bothbusinessandconsumer)releasedmonthlybymostcentralstatisticaloffices;oralsoofthevariousconsensusforecastexercisesconductedpollingseveralresearchinstitutesdeliveringmedianforecasts,thespreadofopinions,andthechangesrelativetothepreviousreleaseoftheexercise(cf.

Galloetal.,

2002,onthewayparticipantsdynamically

influence,andpossiblybias,eachother).

Morerecently,thewidespreadavailabilityofinformationonthewebhasspurredahostofindicatorsderivedfromsearchenginesearches:

D’AmuriandMarcucci

(2017)isanexample

usingGooglesearchestobuildaleadingindicatoronunemployment(awaytoprojectsentimentaboutjobsecurity).Moreover,thediffusionofsocialforumshasfosteredathrivinglineofresearchbasedontextualanalysisofthecontentofopinionsshared,andreactionstoeconomicormarketnews.Thisisconducivetoexaminingboththelevel(akintoconfidence)andthechange(moodswings),andithastheoverwhelmingadvantageofbeingavailableatthedailylevel,whichismostrelevantwhenanalyzingfinancialdata.

Twitter(nowX)seemstobethenaturaloutletforthisexpressionofsentiments,helpedbyalargenumberofsinglemessages,thepossibilityofreplyingtooneanother,andofclassifyingthecontentbytheuseof“tags”.

Angelicoetal.

(2022)documentthetimelinessandaccuracy

ofderivingameasureofinflationexpectationsfromamassiveamountof“tweets”releasedinItaly(initially,millionsthatboildowntoseveralhundredsofthousandsafterprocessingandcleaning).Ingeneral,theultra-highfrequencynatureofthistextualdataoffersaveryrichpoolofinformationtobeextracted(withtheawarenessthatallsortsofmanipulationarepossibleonthatforumindirectingopinions).

StartingfromOctober2018,theItalianNationalStatisticalInstitute(ISTAT)ispublishingahigh-frequencyindexcomputedinreal-timefromItalianTwitter’spublicstreamdata,the

ECBWorkingPaperSeriesNo29994

“SocialMoodonEconomyIndex”(SMEI),providingadailymeasureofthesentimentabouttheItalianeconomy.Theindexiscalculatedonanaverageof26,000tweetsperday.ThisexperimentalstatisticisupdatedquarterlywiththetimeseriesstartinginFebruary2016.

Financialmarketactivityisinterpretedasanexpressionofbeliefsandsentimentsinpro-ducingequilibriumpricesandreturnsfromtrading;bythesametoken,marketvolatility(i.e.thevariabilityofreturns)canbeseenasinverselyrelatedtotheconsensusonhowinformationreachingthemarketpointstotheevolutionofthemarketitself.Typically,adownturninthemarketisareactiontobadnewsandischaracterizedbyhighvolatility.Sincetheearly1990s,amarket-basedmeasureofvolatilityextractedfromtheimpliedvolatilitiesofputandcallop-tions(atthemoney-30daystoexpiration)onamarketindexcametobeknownasthe“fearandgreedindex”(theVIXisderivedfromtheS&P500,

Whaley,

1993,butotheroption-based

volatilityindicesareavailable).

Financialinvestment,beingdrivenbyprofitincentives,isaninterestingfieldinwhichitispossibletoanalyzethepropertiesoftheSMEI,thatis,itscapabilitytorepresentarelevantfactorinteractingwithfinancialvariablesaboutthestockmarketactivityinItaly.Thelatterisrepresentedbytwovariables:thereturnsonanaggregateindex,theMilanoIndicediBorsa(FTSEMIB–thebenchmarkstockmarketindexfortheBorsaItaliana,madeupofthe40most-tradedstocks),anditsvolatility(representedbyarange-basedvolatilitymeasure,

Garmanand

Klass,

1980)

.

Afteradiscussionoftheexistingliterature(Section

3),wediscussthefeaturesofthevari

-ablesused(Section

4),documenting,inparticular,thecontentofavailablevolatilitymeasures

andtheSMEI(arelativelynovelindex).TherelationshipbetweentheSMEIandthemarketbehaviorrepresentedbytheFTSE-MIBisdiscussedinSection

5.

Wesuggest(Section

6)asim

-pletrivariateVectorAutoregressivemodelbetweenthreevariables(marketreturnsontheindex,thevolatilityandtheSMEI)toinvestigatewhichvariablesarein-samplerelevanttoincreasetheforecastingcapability(asimpleGranger-causalitytestonaugmentingthebenchmarkunivariateARmodel).Wesplittheanalysisbetweenin-sample(Subsection

6.1),andout-of-sample,where

weperformaDiebold-Marianotest(DieboldandMariano,

1995)toassesswhentheVARhas

asuperiorperformancethantheARandforwhichvariables.SomeconsiderationoftheimpactoftheCOVID-19pandemicontheserelationshipsisinordersinceourin-sampleperiodendswiththewideoutbreakofthevirusinMarch2020.

Themainfindingscanbesummarizedasfollows.TheresultsindicatethatbeforeCOVID-19,

ECBWorkingPaperSeriesNo29995

marketvolatilitywastheonlyvariablesignificantlyinfluencedbypastvaluesofothervariables.However,duringthepandemic,therelationshipsshifted:pastvolatilityinfluencedbothSMEIandreturns,pastreturnsimpactedvolatility,andSMEIalsobegantoaffectvolatility,thoughlesssignificantly.Thissuggeststhatthepandemicsignificantlyalteredthedynamicsamongthesevariables.ThestudyusesthentheDiebold-Marianotesttocomparethepredictiveabil-itiesofaunivariateautoregression(AR)modelandaVARmodelinanout-of-samplecontext.Byconductingrollingregressionsandgeneratingforecasts,theresultsshowthattheonlyvari-ableforwhichtheVARispredictivelysuperiortotheARmodelistherange-basedvolatility,indicatingthatbothlaggedSMEIandreturnsarevaluableinformationforforecastingmarketactivityturbulence.Movingforward,theISTATSMEIindex,trackingsocialmoodfromshortmessagesonsocialplatformslikeX,isavaluabletoolforunderstandingmarketdynamics,es-peciallyduringunexpectedevents.Thepapersuggestsalsofurtherresearchintohowsentimentindicesrelatetomarketreturnsandvolatilityandhighlightsthepotentialuseofothermarketactivitymeasures,likeaVIX-typevolatilityindex,toenhanceanalysis.Additionally,theuniqueavailabilityofSMEIdataonweekendsandholidaysraisesquestionsaboutitsimpactonmarketactivityatthestartofthetradingweek,whichmaybeworthbeingaddressed.

3Earliercontributionsandissues

JohnMaynardKeynes,asearlyas1936,introducedtheideathatemotionsandinstincts,thefamed“animalspirits”,mayplayacrucialroleindecision-making,especiallyamonginvestors.Morerecently,studieshaveexploredthepotentialconnectionsbetweenpublicsentimentindicesandeconomicandfinancialvariables.

Astreamofpapersindeedfoundthatsentimentandstockmarketdynamicscanbehighlycausalrelated.Forinstance,

BrownandCliff

(2004)examinetherelationshipbetween“in

-vestorsentiment”andstockmarketreturns.Theyfirstbuildasentimentmeasurestartingfromsurveydataoninvestorsentiment(likebullishinvestorexpectationsofabove-averagereturns)andusingKalmanfilterandprincipalcomponentanalysisasmeansofextractingcompositeunobservedsentimentmeasures.Theythenexplorethebi-directionalrelationbetweentheseinvestorsentimentmeasuresandthenear-termstockreturnsinavectorautoregression(VAR)framework.Theyfindthatchangesinthecompositemeasuresofinvestorsentimentarehighlycorrelatedwithcontemporaneousmarketreturns,butthiscorrelationdoesnotdirectlyreveal

ECBWorkingPaperSeriesNo29996

thecausalrelationbetweensentimentandthemarket.ThentheVARanalysisrevealsthatmarketreturnsclearlycausefuturechangesinsentiment.However,verylittleevidencesuggestssentimentcausessubsequentmarketreturns.

Similarresultsaredisplayedin

Wangetal.

(2006),whotestwhethersentimentisusefulfor

volatilityforecastingpurposes.Infact,theyfindthatmostofthesentimentmeasurestheyusearecausedbyreturnsandvolatilityratherthanviceversa.Inaddition,theyfindthatlaggedreturnscausevolatility.Finally,allsentimentvariableshaveextremelylimitedforecastingpoweroncereturnsareincludedasaforecastingvariable.

Tetlock

(2007)exploresinsteadhowmedia

contentinfluencesinvestorsentimentand,consequently,stockmarketmovementsbyusingdailycontentfromapopularWallStreetJournalcolumn.Hefoundthathighmediapessimismpredictsdownwardpressureonmarketpricesfollowedbyareversiontofundamentals,andunusuallyhighorlowpessimismpredictshighmarkettradingvolume.

Inthesamevein,

GilbertandKarahalios

(2010)showhowestimatingemotionsfromweblogs

providesnovelinformationaboutfuturestockmarketprices.Fromadatasetofover20millionLiveJournalposts,theyconstructametricofanxiety,worryandfearcalledtheAnxietyIndex.UsingthenaGrangercausalityframework,theyfindthatincreasesinexpressionsofanxietypredictdownwardpressureontheS&P500index.ThesefindingsarethenconfirmedviaMonteCarlosimulationsandshowhowthemoodofmillionsinalargeonlinecommunity,evenonethatprimarilydiscussesdailylife,cananticipatechangesinaseeminglyunrelatedsystem.

Zhang

etal.

(2011)explorehowsentimentandactivityonTwittercanbeleveragedtounderstand

investorbehaviorandpredictstockmarketindicatorsfromDowJones,NASDAQ,andS&P500.Startingfromarandomizedsampleoftweetstheymeasureddaily“collectivehopeandfear”andanalyzedthenthecorrelationbetweentheseindicesandthestockmarketindicators.TheanalysisshowsthatTwittersentimentissignificantlycorrelatedwithstockmarketmove-ments.PositivesentimentonTwitterisoftenassociatedwithrisingstockprices,whilenegativesentimentcorrelateswithdecliningprices.ThevolumeofTwitteractivityisalsofoundtobeausefulpredictor,withhighertweetvolumesindicatingincreasedmarketattentionandpotentialvolatility.Also

Bollenetal.

(2011)startfromTwittertoinvestigatewhetherpublicmoodstates

derivedfromfeedsarecorrelatedtothevalueoftheDowJonesIndustrialAverage(DJIA)overtime.Theyanalyzedover9.8milliontweetsfrom2.7millionusersoversixmonthstoassessthesentimentofeachtweetaseitherpositiveornegative.Then,aGrangercausalityanalysisandaSelf-OrganizingFuzzyNeuralNetworkareusedtoinvestigatethehypothesisthatpublicmood

ECBWorkingPaperSeriesNo29997

statesarepredictiveofchangesintheDJIAclosingvalues.Theauthorsfindthattheinclu-sionofcertainpublicmooddimensionsindeedimprovestheaccuracyofstandardstockmarketpredictionmodels.Twitterdataareusedalsoby

RaoandSrivastava

(2012)toinvestigatehow

sentimentanalysiscanbeemployedtopredictstockmarketmovements.Thestudy,basedonmorethan4milliontweetsbetweenJune2010toJuly2011,findsthatthereisasignificantcorrelationbetweenTwittersentimentanddiscussionsandstockmarketmovements.Positive

sentimentisoftenassociatedwithrisingstockprices,whilenegativesentimentcorrelateswithfallingprices.Thevolumeoftweetsisalsofoundtobeausefulpredictor,withhighervolumesindicatinggreatermarketattentionandpotentialvolatility.

Daetal.

(2015)insteadavailof

dailyInternetsearchvolumefrommillionsofhouseholdstoinvestigatetherelationshipbetweeninvestormarket-levelandassetprices,particularlyhowfear-basedsentimentimpactsmarketdynamics.ByaggregatingthevolumeofqueriesrelatedtohouseholdconcernstheyconstructaFinancialandEconomicAttitudesRevealedbySearch(FEARS)indexasanewmeasureofinvestorsentiment.TheFEARSindexwasthenfoundtohavesignificantpredictivepowerregardingfuturemarketreturns.Infact,between2004and2011,theyfoundthatFEARS(i)predictshort-termreturnreversals,(ii)predicttemporaryincreasesinvolatility,and(iii)predictmutualfundflowsoutofequityfundsandintobondfunds.Adifferentapproachisappliedby

AggarwalandMohanty

(2018)whomakeuseofprincipalcomponentanalysis(PCA)tobuild

sentimentindexasaproxyforIndianstockmarketsentimentsoveratimeframefromApril1996toJanuary2017.Threetypesofvariablesenterthecalculationoftheindex:indirectmarketmeasures(mostlyindicatorslikeforinstancepricetoearningratios,dividendyieldsorpricetobookratios)andIndianandUSmacrovariables.TheindexisthenusedtoestimateviaOLSregressionstheimpactofIndianinvestorsentimentsoncontemporaneousstockreturnsofBombayStockExchange,NationalStockExchangeandvarioussectoralindices.Thestudyfindsthatthereisasignificantpositivecorrelationbetweenthesentimentindexandstockindexreturns.

Chenetal.

(2019)investigatewhethersentimentanalysisofsocialmediapostscould

beusedtopredictthedirectionofstockpricemovements.TheauthorsapplysevendifferenttechniquesofdataminingtopredictstockpricemovementofShanghaiCompositeIndexfortheperiodApril2016toMay2018.Thefindingssuggestthatsentimentanalysisofsocialmediapostscouldprovidevaluableinsightsintothepotentialdirectionofstockpricemovements;forinstancesentimentderivedfromEastmoney,asocialmediaplatformfortheChinesefinancialcommunity,furtherenhancesmodelperformances.

ECBWorkingPaperSeriesNo29998

Nymanetal.

(2021)investigatestheinfluenceofnewsandnarrativesinfinancialsystems,

especiallyinutilizingbigdataforevaluatingsystemicrisk.Thepaperexaminestheapplicationoftextualanalysistechniquesandbigdataanalyticstoextractvaluableinsightsfromnewsandnarrativesources,assistinginidentifyingandassessingsystemicriskswithinfinancialsystems.Theirresultshighlighthowourmeasuresofsentimentandnarrativeconsensuscorrelatewellwith,andinsomecasesevenappearto‘cause’,certaineconomicandfinancialvariables.Also

Huangetal.

(2019),usecomputationaltextanalysistechniquetoconstructsentimentindicesfor

20countriesfrom1980to2019.Theauthorsthenassesswhetherthesesentimentindicestriggerearlywarningindicators(EWIs)aheadoffinancialcrises.Foreachsentimentindex,anEWSistriggeredeachtimethereisaspike,i.e.whentheindexvalueisabove2standarddeviationsfromabackward-lookingaverageof24months.Theyfindthat,foreachcountryinoursample,atleastoneoftheindicatorswouldhavesuccessfullyanticipatedmostcrisesinawindowof24months.Asregardstechniquestoanalysetextdata,

LoughranandMcDonald

(2011)have

investigatedhowtextualanalysistechniquesareutilizedtointerpretfinancialreports.Theauthorsparticularlyfocusonalargesampleof10-KfilingssubmittedtotheSecuritiesandExchangeCommission(SEC)from1994to2008.Relevanttoourstudy,theyalsofindsignificantrelationsbetweenthesentimentmeasurestheybuildandeconomicandfinancialvariables;forinstance,theyfoundthatsomemeasuresaresignificantinregressionsestimatingabnormalsharestradingvolumes.

TurningtothestatisticalpropertiesoftheSMEIindex,

Righietal.

(2020)analyzethe

relationshipsofthismetricwithsomedailyandmonthlymacroeconomicindicatorscomingfromtraditionalandnon-traditionalsources.Theyuseseveralnon-traditionalsourcestoproducetimeseriestorelatetotheSME,suchasthedailynumberofCOVID-19deathsandnewpositivecasesreportedbytheCivilProtectionDepartmentormacroeconomicindicatorscomingfromTarget2andBI-COMPseries(onPOSandATMtransactions),butalsotheBankofItalyelectroniccardtransactionande-commercetransactionmonthlyseriesandtheconsumerconfidenceindicators.TheyfoundthatthemonthlyaverageofthedailyseriesoftheleveloftheSMEindexshowsalowcontemporaneouscorrelationandaweakpredictivepoweroftheSMEindexforthetraditionalmonthlyindicators.Ontheotherhand,theyobservedapositivecorrelationbetweentheSMEIandtheBI-COMPPOSdailytransactionseries.

ECBWorkingPaperSeriesNo29999

AuthorsPeriodMarkets-includedSentimentIndexMethodResults

GilbertandKara-

halios

(2010)

2008S&P500”AnxietyIndex”(anaggregate

measureofanxietyandworry)es-timatedstartingfromadatasetof

GrangercausalityandMonteCarlosimulations

Thepaperstatisticallyshowsthatabroadindexofmoodfromanonlinecommunityhasnovelpredictiveinformationaboutthestockmarket.

RaoandSrivastava

(2012)

Bollenetal.

(2011)

Zhangetal.

(2011)

LoughranandMc-

Donald

(2011)

Nymanetal.

(2021)

Tetlock

(2007)

AggarwalandMo-

hanty

(2018)

Daetal.

(2015)

Huangetal.

(2019)

Chenetal.

(2019)

BrownandCliff

(2004)

Wangetal.

(2006)

June2010-

July2011

February

2008-Decem-ber2008

March2009-September2009

1994–2008

January1984-September1999

April1996-January2017

2004-2011

1980to2019

April2017-

May2018

March1965-December1998

February1990-December2001

DJIAandNASDAQ-100

DJIA

DJIA,NASDAQ-100andS&P500

NASDAQ

DIJA

Bombaychange,

StockEx-National

StockExchange,var-iousIndiansectoralindices

S&P500,NASDAQ-100,Russell2000

ShanghaiCompositeIndex.

S&P500,Russell2000

S&P100

over20millionpostsmadeonthesocialnetworkingserviceLiveJour-nal.(dailyfrequency)

Twitterfeeds(dailyfrequency)

Twitterfeeds(dailyfrequency)

Twitterfeeds(dailyfrequency)

Sentimentmeasuresbuiltviatex-tualanalysisstartingfrom10-Kre-portforms(monthlyfrequency)

BoEdailymarketsreports;brokerresearchreports;Thomson-ReutersNewsarchive(dailyfrequency).

WallStreetJournal’s(WSJ’s)“AbreastoftheMarket”columnonU.S.stockmarketreturns(dailyfrequency).

PCAtobuildsentimentindex,thenOLS(monthlyfrequency).

Ameasureofinvestorsentiment(AttitudesRevealedbySearch(FEARS))builtbyaggregat-ingdailyInternetsearchesfrommillionsofhouseholds(dailyfre-quency)

NewsarticlesfromtheFinancialTimes(dailyfrequency).

SentimentderivedfromEastmoney,asocialmediaplatformforthefi-nancialcommunityinChina(dailyfrequency).

Twosurvey-basedinvestorsenti-mentmeasures.Indirectsentimentmeasuressuchasadvance-declineratio,shortinterest,andclosed-endfunddiscounts(weeklyfrequency).

S&P100(OEX)put–calltrad-ingvolumeratio(PCV);OEXput–callopeninterestratio(PCO);NYSEARMSindex.Twosurvey-basedsentimentratiosprovidedbyinvestmentinformationproviders.(dailyfrequency)

causalityMining

ExpertSystem

GrangerModel

(EMMS)

GrangercausalityandSelf-OrganizingFuzzyNeuralNetwork

Correlationanalysis

Logitregression

Acombinationofnaturallanguageprocessing(NLP)andmachinelearningalgo-rithms.

VAREstimates

Acompositesentimentin-dexforIndianstockmar-ket,builtwithprincipalcomponentanalysis,start-ingfromindirectmarketmeasures(suchaspricetoearningsratio,pricetobookratio,dividendyield...)andmacrovariablesforIndianandUSmarkets.

RegressionAnalysis

variousmachinelearningmodels,suchaslogisticregression,supportvectormachines(SVM),andneuralnetworks

PrincipalComponent,Kalmanfilter,VAR

Grangercausality/regres-sions

Highcorrelation(upto0.88forreturns)betweenstockpricesandTwit-tersentiments

TheaccuracyofDJIApredictionscanbesignificantlyimprovedbytheinclusionofspecificpublicmooddimensions

Emotionaltweetpercentagesignificantlynegativelycorrelated

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论