




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
EUROPEANCENTRALBANK
EUROSYSTEM
WorkingPaperSeries
StefanoBorgioli,GiampieroM.Gallo,ChiaraOngari
Financialreturns,sentimentandmarketvolatility.Adynamic
assessment.
No2999
Disclaimer:ThispapershouldnotbereportedasrepresentingtheviewsoftheEuropeanCentralBank(ECB).TheviewsexpressedarethoseoftheauthorsanddonotnecessarilyreflectthoseoftheECB.
ECBWorkingPaperSeriesNo29991
Abstract
In1936,JohnMaynardKeynesproposedthatemotionsandinstinctsarepivotalin
decision-making,particularlyforinvestors.Bothpositiveandnegativemoodscaninfluencejudgmentsanddecisions,extendingtoeconomicandfinancialchoices.Intuitions,emotionalstates,andbiasessignificantlyshapehowpeoplethinkandact.Measuringmoodorsen-timentischallenging,butsurveysanddatacollectionmethods,suchasconfidenceindicesandconsensusforecasts,offersomesolutions.Recently,theavailabilityofwebdata,includ-ingsearchenginequeriesandsocialmediaactivity,hasprovidedhigh-frequencysentimentmeasures.Forexample,theItalianNationalStatisticalInstitute’sSocialMoodonEconomyIndex(SMEI)usesTwitterdatatoassesseconomicsentimentinItaly.Therelationshipbe-tweenSMEIandfinancialmarketactivity,specificallytheFTSEMIBindexanditsvolatility,isexaminedusingatrivariateVectorAutoregressivemodel,takingintoaccounttheimpactoftheCOVID-19pandemic.
Keywords:VAR,GrangerCausality,sentimentanalysis,financialmarket,forecastingJELCodes:C1,C32,C53,G4
ECBWorkingPaperSeriesNo29992
1Non-technicalsummary
Bothpositiveandnegativeemotionscanimpactjudgmentsandeconomicdecisions.Althoughmeasuringmoodorsentimentischallenging,toolslikesurveysandconfidenceindiceshelp.Infactonlinedata,suchassearchenginequeriesandsocialmediaactivity,providemorefrequentsentimentmeasurements.Forinstance,theItalianNationalStatisticalInstitutecreatedtheSocialMoodonEconomyIndex(SMEI)usingTwitterdatatogaugeeconomicsentimentinItaly.ThisstudyexaminestherelationshipbetweentheSMEIandfinancialmarketactivity,particularlytheFTSEMIBindex,usingamodelthatconsidersalsopossibleeffectsoftheCOVID-19pandemic.
Twomaindatasourcesareused:theSMEI,whichmeasuresdailyItalianeconomicsentimentthroughtweets,andtheFTSEMIB,whichrepresentstheperformanceof40majorItalianstocksandincludesvolatilitydata.TheanalysisusesVectorAuto-regressiveModels(VAR)tostudytherelationshipsbetweentheSMEI,FTSEMIBreturns,andvolatilityfromFebruary10,2016,toMarch8,2020.Grangercausalitytestsarethenconductedtodetermineifpastvaluesofonevariablecanpredictcurrentvaluesofanother,revealingpotentialbidirectionalinfluences.
“Evenapartfromtheinstabilityduetospeculation,thereistheinstabilityduetothecharac-teristicofhumannaturethatalargeproportionofourpositiveactivitiesdependonspontaneousoptimismratherthanonamathematicalexpectation,whethermoralorhedonisticoreconomic.Most,probably,ofourdecisionstodosomethingpositive,thefullconsequencesofwhichwillbedrawnoutovermanydaystocome,canonlybetakenasaresultofanimalspirits–ofaspontaneousurgetoactionratherthaninaction,andnotastheoutcomeofaweightedaverageofquantitativebenefitsmultipliedbyquantitativeprobabilities.”
JohnMaynardKeynes,GeneralTheoryOfEmployment,InterestAndMoney.
2Introduction
JohnMaynardKeynesintroducedasearlyas1936theideathatemotionsandinstincts(the“animalspirits”)ratherthanmererationalanalysis,playacrucialroleindecisionmaking,particularlyamonginvestors.
ECBWorkingPaperSeriesNo29993
Moods,betheynegativeorpositive,affectjudgmentanddecision-making,evenwhenpromptedbyunrelatedevents.Thisappliestoeconomicandfinancialdecisions,aswell:
Kahneman
(2011)
hasbecomethereferenceofchoiceonhowintuitions,emotionalstatus,andbiasesshapejudg-mentsandaffectthinking,behavior,anddecisions.Therefore,informationisnottheonlyfactoratplay,andrationalityisnotalwaysthemainenginebehindactions.
Ifthetheoreticalreasoningisclear,thewaymoodorsentimentaremeasuredissomewhatofachallenge;intheattempttoisolateanaggregateresult,severalsuggestionsarepresentedintheliterature.Oneoptionistoconductsurveysandcollectdataabouthoweconomicagentsjudgetheevolutionofthegeneraleconomicconditionsortheirown.Thisisthecase,forexample,ofthevariousconfidenceindices(bothbusinessandconsumer)releasedmonthlybymostcentralstatisticaloffices;oralsoofthevariousconsensusforecastexercisesconductedpollingseveralresearchinstitutesdeliveringmedianforecasts,thespreadofopinions,andthechangesrelativetothepreviousreleaseoftheexercise(cf.
Galloetal.,
2002,onthewayparticipantsdynamically
influence,andpossiblybias,eachother).
Morerecently,thewidespreadavailabilityofinformationonthewebhasspurredahostofindicatorsderivedfromsearchenginesearches:
D’AmuriandMarcucci
(2017)isanexample
usingGooglesearchestobuildaleadingindicatoronunemployment(awaytoprojectsentimentaboutjobsecurity).Moreover,thediffusionofsocialforumshasfosteredathrivinglineofresearchbasedontextualanalysisofthecontentofopinionsshared,andreactionstoeconomicormarketnews.Thisisconducivetoexaminingboththelevel(akintoconfidence)andthechange(moodswings),andithastheoverwhelmingadvantageofbeingavailableatthedailylevel,whichismostrelevantwhenanalyzingfinancialdata.
Twitter(nowX)seemstobethenaturaloutletforthisexpressionofsentiments,helpedbyalargenumberofsinglemessages,thepossibilityofreplyingtooneanother,andofclassifyingthecontentbytheuseof“tags”.
Angelicoetal.
(2022)documentthetimelinessandaccuracy
ofderivingameasureofinflationexpectationsfromamassiveamountof“tweets”releasedinItaly(initially,millionsthatboildowntoseveralhundredsofthousandsafterprocessingandcleaning).Ingeneral,theultra-highfrequencynatureofthistextualdataoffersaveryrichpoolofinformationtobeextracted(withtheawarenessthatallsortsofmanipulationarepossibleonthatforumindirectingopinions).
StartingfromOctober2018,theItalianNationalStatisticalInstitute(ISTAT)ispublishingahigh-frequencyindexcomputedinreal-timefromItalianTwitter’spublicstreamdata,the
ECBWorkingPaperSeriesNo29994
“SocialMoodonEconomyIndex”(SMEI),providingadailymeasureofthesentimentabouttheItalianeconomy.Theindexiscalculatedonanaverageof26,000tweetsperday.ThisexperimentalstatisticisupdatedquarterlywiththetimeseriesstartinginFebruary2016.
Financialmarketactivityisinterpretedasanexpressionofbeliefsandsentimentsinpro-ducingequilibriumpricesandreturnsfromtrading;bythesametoken,marketvolatility(i.e.thevariabilityofreturns)canbeseenasinverselyrelatedtotheconsensusonhowinformationreachingthemarketpointstotheevolutionofthemarketitself.Typically,adownturninthemarketisareactiontobadnewsandischaracterizedbyhighvolatility.Sincetheearly1990s,amarket-basedmeasureofvolatilityextractedfromtheimpliedvolatilitiesofputandcallop-tions(atthemoney-30daystoexpiration)onamarketindexcametobeknownasthe“fearandgreedindex”(theVIXisderivedfromtheS&P500,
Whaley,
1993,butotheroption-based
volatilityindicesareavailable).
Financialinvestment,beingdrivenbyprofitincentives,isaninterestingfieldinwhichitispossibletoanalyzethepropertiesoftheSMEI,thatis,itscapabilitytorepresentarelevantfactorinteractingwithfinancialvariablesaboutthestockmarketactivityinItaly.Thelatterisrepresentedbytwovariables:thereturnsonanaggregateindex,theMilanoIndicediBorsa(FTSEMIB–thebenchmarkstockmarketindexfortheBorsaItaliana,madeupofthe40most-tradedstocks),anditsvolatility(representedbyarange-basedvolatilitymeasure,
Garmanand
Klass,
1980)
.
Afteradiscussionoftheexistingliterature(Section
3),wediscussthefeaturesofthevari
-ablesused(Section
4),documenting,inparticular,thecontentofavailablevolatilitymeasures
andtheSMEI(arelativelynovelindex).TherelationshipbetweentheSMEIandthemarketbehaviorrepresentedbytheFTSE-MIBisdiscussedinSection
5.
Wesuggest(Section
6)asim
-pletrivariateVectorAutoregressivemodelbetweenthreevariables(marketreturnsontheindex,thevolatilityandtheSMEI)toinvestigatewhichvariablesarein-samplerelevanttoincreasetheforecastingcapability(asimpleGranger-causalitytestonaugmentingthebenchmarkunivariateARmodel).Wesplittheanalysisbetweenin-sample(Subsection
6.1),andout-of-sample,where
weperformaDiebold-Marianotest(DieboldandMariano,
1995)toassesswhentheVARhas
asuperiorperformancethantheARandforwhichvariables.SomeconsiderationoftheimpactoftheCOVID-19pandemicontheserelationshipsisinordersinceourin-sampleperiodendswiththewideoutbreakofthevirusinMarch2020.
Themainfindingscanbesummarizedasfollows.TheresultsindicatethatbeforeCOVID-19,
ECBWorkingPaperSeriesNo29995
marketvolatilitywastheonlyvariablesignificantlyinfluencedbypastvaluesofothervariables.However,duringthepandemic,therelationshipsshifted:pastvolatilityinfluencedbothSMEIandreturns,pastreturnsimpactedvolatility,andSMEIalsobegantoaffectvolatility,thoughlesssignificantly.Thissuggeststhatthepandemicsignificantlyalteredthedynamicsamongthesevariables.ThestudyusesthentheDiebold-Marianotesttocomparethepredictiveabil-itiesofaunivariateautoregression(AR)modelandaVARmodelinanout-of-samplecontext.Byconductingrollingregressionsandgeneratingforecasts,theresultsshowthattheonlyvari-ableforwhichtheVARispredictivelysuperiortotheARmodelistherange-basedvolatility,indicatingthatbothlaggedSMEIandreturnsarevaluableinformationforforecastingmarketactivityturbulence.Movingforward,theISTATSMEIindex,trackingsocialmoodfromshortmessagesonsocialplatformslikeX,isavaluabletoolforunderstandingmarketdynamics,es-peciallyduringunexpectedevents.Thepapersuggestsalsofurtherresearchintohowsentimentindicesrelatetomarketreturnsandvolatilityandhighlightsthepotentialuseofothermarketactivitymeasures,likeaVIX-typevolatilityindex,toenhanceanalysis.Additionally,theuniqueavailabilityofSMEIdataonweekendsandholidaysraisesquestionsaboutitsimpactonmarketactivityatthestartofthetradingweek,whichmaybeworthbeingaddressed.
3Earliercontributionsandissues
JohnMaynardKeynes,asearlyas1936,introducedtheideathatemotionsandinstincts,thefamed“animalspirits”,mayplayacrucialroleindecision-making,especiallyamonginvestors.Morerecently,studieshaveexploredthepotentialconnectionsbetweenpublicsentimentindicesandeconomicandfinancialvariables.
Astreamofpapersindeedfoundthatsentimentandstockmarketdynamicscanbehighlycausalrelated.Forinstance,
BrownandCliff
(2004)examinetherelationshipbetween“in
-vestorsentiment”andstockmarketreturns.Theyfirstbuildasentimentmeasurestartingfromsurveydataoninvestorsentiment(likebullishinvestorexpectationsofabove-averagereturns)andusingKalmanfilterandprincipalcomponentanalysisasmeansofextractingcompositeunobservedsentimentmeasures.Theythenexplorethebi-directionalrelationbetweentheseinvestorsentimentmeasuresandthenear-termstockreturnsinavectorautoregression(VAR)framework.Theyfindthatchangesinthecompositemeasuresofinvestorsentimentarehighlycorrelatedwithcontemporaneousmarketreturns,butthiscorrelationdoesnotdirectlyreveal
ECBWorkingPaperSeriesNo29996
thecausalrelationbetweensentimentandthemarket.ThentheVARanalysisrevealsthatmarketreturnsclearlycausefuturechangesinsentiment.However,verylittleevidencesuggestssentimentcausessubsequentmarketreturns.
Similarresultsaredisplayedin
Wangetal.
(2006),whotestwhethersentimentisusefulfor
volatilityforecastingpurposes.Infact,theyfindthatmostofthesentimentmeasurestheyusearecausedbyreturnsandvolatilityratherthanviceversa.Inaddition,theyfindthatlaggedreturnscausevolatility.Finally,allsentimentvariableshaveextremelylimitedforecastingpoweroncereturnsareincludedasaforecastingvariable.
Tetlock
(2007)exploresinsteadhowmedia
contentinfluencesinvestorsentimentand,consequently,stockmarketmovementsbyusingdailycontentfromapopularWallStreetJournalcolumn.Hefoundthathighmediapessimismpredictsdownwardpressureonmarketpricesfollowedbyareversiontofundamentals,andunusuallyhighorlowpessimismpredictshighmarkettradingvolume.
Inthesamevein,
GilbertandKarahalios
(2010)showhowestimatingemotionsfromweblogs
providesnovelinformationaboutfuturestockmarketprices.Fromadatasetofover20millionLiveJournalposts,theyconstructametricofanxiety,worryandfearcalledtheAnxietyIndex.UsingthenaGrangercausalityframework,theyfindthatincreasesinexpressionsofanxietypredictdownwardpressureontheS&P500index.ThesefindingsarethenconfirmedviaMonteCarlosimulationsandshowhowthemoodofmillionsinalargeonlinecommunity,evenonethatprimarilydiscussesdailylife,cananticipatechangesinaseeminglyunrelatedsystem.
Zhang
etal.
(2011)explorehowsentimentandactivityonTwittercanbeleveragedtounderstand
investorbehaviorandpredictstockmarketindicatorsfromDowJones,NASDAQ,andS&P500.Startingfromarandomizedsampleoftweetstheymeasureddaily“collectivehopeandfear”andanalyzedthenthecorrelationbetweentheseindicesandthestockmarketindicators.TheanalysisshowsthatTwittersentimentissignificantlycorrelatedwithstockmarketmove-ments.PositivesentimentonTwitterisoftenassociatedwithrisingstockprices,whilenegativesentimentcorrelateswithdecliningprices.ThevolumeofTwitteractivityisalsofoundtobeausefulpredictor,withhighertweetvolumesindicatingincreasedmarketattentionandpotentialvolatility.Also
Bollenetal.
(2011)startfromTwittertoinvestigatewhetherpublicmoodstates
derivedfromfeedsarecorrelatedtothevalueoftheDowJonesIndustrialAverage(DJIA)overtime.Theyanalyzedover9.8milliontweetsfrom2.7millionusersoversixmonthstoassessthesentimentofeachtweetaseitherpositiveornegative.Then,aGrangercausalityanalysisandaSelf-OrganizingFuzzyNeuralNetworkareusedtoinvestigatethehypothesisthatpublicmood
ECBWorkingPaperSeriesNo29997
statesarepredictiveofchangesintheDJIAclosingvalues.Theauthorsfindthattheinclu-sionofcertainpublicmooddimensionsindeedimprovestheaccuracyofstandardstockmarketpredictionmodels.Twitterdataareusedalsoby
RaoandSrivastava
(2012)toinvestigatehow
sentimentanalysiscanbeemployedtopredictstockmarketmovements.Thestudy,basedonmorethan4milliontweetsbetweenJune2010toJuly2011,findsthatthereisasignificantcorrelationbetweenTwittersentimentanddiscussionsandstockmarketmovements.Positive
sentimentisoftenassociatedwithrisingstockprices,whilenegativesentimentcorrelateswithfallingprices.Thevolumeoftweetsisalsofoundtobeausefulpredictor,withhighervolumesindicatinggreatermarketattentionandpotentialvolatility.
Daetal.
(2015)insteadavailof
dailyInternetsearchvolumefrommillionsofhouseholdstoinvestigatetherelationshipbetweeninvestormarket-levelandassetprices,particularlyhowfear-basedsentimentimpactsmarketdynamics.ByaggregatingthevolumeofqueriesrelatedtohouseholdconcernstheyconstructaFinancialandEconomicAttitudesRevealedbySearch(FEARS)indexasanewmeasureofinvestorsentiment.TheFEARSindexwasthenfoundtohavesignificantpredictivepowerregardingfuturemarketreturns.Infact,between2004and2011,theyfoundthatFEARS(i)predictshort-termreturnreversals,(ii)predicttemporaryincreasesinvolatility,and(iii)predictmutualfundflowsoutofequityfundsandintobondfunds.Adifferentapproachisappliedby
AggarwalandMohanty
(2018)whomakeuseofprincipalcomponentanalysis(PCA)tobuild
sentimentindexasaproxyforIndianstockmarketsentimentsoveratimeframefromApril1996toJanuary2017.Threetypesofvariablesenterthecalculationoftheindex:indirectmarketmeasures(mostlyindicatorslikeforinstancepricetoearningratios,dividendyieldsorpricetobookratios)andIndianandUSmacrovariables.TheindexisthenusedtoestimateviaOLSregressionstheimpactofIndianinvestorsentimentsoncontemporaneousstockreturnsofBombayStockExchange,NationalStockExchangeandvarioussectoralindices.Thestudyfindsthatthereisasignificantpositivecorrelationbetweenthesentimentindexandstockindexreturns.
Chenetal.
(2019)investigatewhethersentimentanalysisofsocialmediapostscould
beusedtopredictthedirectionofstockpricemovements.TheauthorsapplysevendifferenttechniquesofdataminingtopredictstockpricemovementofShanghaiCompositeIndexfortheperiodApril2016toMay2018.Thefindingssuggestthatsentimentanalysisofsocialmediapostscouldprovidevaluableinsightsintothepotentialdirectionofstockpricemovements;forinstancesentimentderivedfromEastmoney,asocialmediaplatformfortheChinesefinancialcommunity,furtherenhancesmodelperformances.
ECBWorkingPaperSeriesNo29998
Nymanetal.
(2021)investigatestheinfluenceofnewsandnarrativesinfinancialsystems,
especiallyinutilizingbigdataforevaluatingsystemicrisk.Thepaperexaminestheapplicationoftextualanalysistechniquesandbigdataanalyticstoextractvaluableinsightsfromnewsandnarrativesources,assistinginidentifyingandassessingsystemicriskswithinfinancialsystems.Theirresultshighlighthowourmeasuresofsentimentandnarrativeconsensuscorrelatewellwith,andinsomecasesevenappearto‘cause’,certaineconomicandfinancialvariables.Also
Huangetal.
(2019),usecomputationaltextanalysistechniquetoconstructsentimentindicesfor
20countriesfrom1980to2019.Theauthorsthenassesswhetherthesesentimentindicestriggerearlywarningindicators(EWIs)aheadoffinancialcrises.Foreachsentimentindex,anEWSistriggeredeachtimethereisaspike,i.e.whentheindexvalueisabove2standarddeviationsfromabackward-lookingaverageof24months.Theyfindthat,foreachcountryinoursample,atleastoneoftheindicatorswouldhavesuccessfullyanticipatedmostcrisesinawindowof24months.Asregardstechniquestoanalysetextdata,
LoughranandMcDonald
(2011)have
investigatedhowtextualanalysistechniquesareutilizedtointerpretfinancialreports.Theauthorsparticularlyfocusonalargesampleof10-KfilingssubmittedtotheSecuritiesandExchangeCommission(SEC)from1994to2008.Relevanttoourstudy,theyalsofindsignificantrelationsbetweenthesentimentmeasurestheybuildandeconomicandfinancialvariables;forinstance,theyfoundthatsomemeasuresaresignificantinregressionsestimatingabnormalsharestradingvolumes.
TurningtothestatisticalpropertiesoftheSMEIindex,
Righietal.
(2020)analyzethe
relationshipsofthismetricwithsomedailyandmonthlymacroeconomicindicatorscomingfromtraditionalandnon-traditionalsources.Theyuseseveralnon-traditionalsourcestoproducetimeseriestorelatetotheSME,suchasthedailynumberofCOVID-19deathsandnewpositivecasesreportedbytheCivilProtectionDepartmentormacroeconomicindicatorscomingfromTarget2andBI-COMPseries(onPOSandATMtransactions),butalsotheBankofItalyelectroniccardtransactionande-commercetransactionmonthlyseriesandtheconsumerconfidenceindicators.TheyfoundthatthemonthlyaverageofthedailyseriesoftheleveloftheSMEindexshowsalowcontemporaneouscorrelationandaweakpredictivepoweroftheSMEindexforthetraditionalmonthlyindicators.Ontheotherhand,theyobservedapositivecorrelationbetweentheSMEIandtheBI-COMPPOSdailytransactionseries.
ECBWorkingPaperSeriesNo29999
AuthorsPeriodMarkets-includedSentimentIndexMethodResults
GilbertandKara-
halios
(2010)
2008S&P500”AnxietyIndex”(anaggregate
measureofanxietyandworry)es-timatedstartingfromadatasetof
GrangercausalityandMonteCarlosimulations
Thepaperstatisticallyshowsthatabroadindexofmoodfromanonlinecommunityhasnovelpredictiveinformationaboutthestockmarket.
RaoandSrivastava
(2012)
Bollenetal.
(2011)
Zhangetal.
(2011)
LoughranandMc-
Donald
(2011)
Nymanetal.
(2021)
Tetlock
(2007)
AggarwalandMo-
hanty
(2018)
Daetal.
(2015)
Huangetal.
(2019)
Chenetal.
(2019)
BrownandCliff
(2004)
Wangetal.
(2006)
June2010-
July2011
February
2008-Decem-ber2008
March2009-September2009
1994–2008
January1984-September1999
April1996-January2017
2004-2011
1980to2019
April2017-
May2018
March1965-December1998
February1990-December2001
DJIAandNASDAQ-100
DJIA
DJIA,NASDAQ-100andS&P500
NASDAQ
DIJA
Bombaychange,
StockEx-National
StockExchange,var-iousIndiansectoralindices
S&P500,NASDAQ-100,Russell2000
ShanghaiCompositeIndex.
S&P500,Russell2000
S&P100
over20millionpostsmadeonthesocialnetworkingserviceLiveJour-nal.(dailyfrequency)
Twitterfeeds(dailyfrequency)
Twitterfeeds(dailyfrequency)
Twitterfeeds(dailyfrequency)
Sentimentmeasuresbuiltviatex-tualanalysisstartingfrom10-Kre-portforms(monthlyfrequency)
BoEdailymarketsreports;brokerresearchreports;Thomson-ReutersNewsarchive(dailyfrequency).
WallStreetJournal’s(WSJ’s)“AbreastoftheMarket”columnonU.S.stockmarketreturns(dailyfrequency).
PCAtobuildsentimentindex,thenOLS(monthlyfrequency).
Ameasureofinvestorsentiment(AttitudesRevealedbySearch(FEARS))builtbyaggregat-ingdailyInternetsearchesfrommillionsofhouseholds(dailyfre-quency)
NewsarticlesfromtheFinancialTimes(dailyfrequency).
SentimentderivedfromEastmoney,asocialmediaplatformforthefi-nancialcommunityinChina(dailyfrequency).
Twosurvey-basedinvestorsenti-mentmeasures.Indirectsentimentmeasuressuchasadvance-declineratio,shortinterest,andclosed-endfunddiscounts(weeklyfrequency).
S&P100(OEX)put–calltrad-ingvolumeratio(PCV);OEXput–callopeninterestratio(PCO);NYSEARMSindex.Twosurvey-basedsentimentratiosprovidedbyinvestmentinformationproviders.(dailyfrequency)
causalityMining
ExpertSystem
GrangerModel
(EMMS)
GrangercausalityandSelf-OrganizingFuzzyNeuralNetwork
Correlationanalysis
Logitregression
Acombinationofnaturallanguageprocessing(NLP)andmachinelearningalgo-rithms.
VAREstimates
Acompositesentimentin-dexforIndianstockmar-ket,builtwithprincipalcomponentanalysis,start-ingfromindirectmarketmeasures(suchaspricetoearningsratio,pricetobookratio,dividendyield...)andmacrovariablesforIndianandUSmarkets.
RegressionAnalysis
variousmachinelearningmodels,suchaslogisticregression,supportvectormachines(SVM),andneuralnetworks
PrincipalComponent,Kalmanfilter,VAR
Grangercausality/regres-sions
Highcorrelation(upto0.88forreturns)betweenstockpricesandTwit-tersentiments
TheaccuracyofDJIApredictionscanbesignificantlyimprovedbytheinclusionofspecificpublicmooddimensions
Emotionaltweetpercentagesignificantlynegativelycorrelated
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 加州买车合同样本
- 别克车销售合同标准文本
- 副食批发合同范例
- 建筑砂石材料采购合同
- 农药仓储配送合同样本
- 切授权合同范例
- 办事合同样本
- 主机安全加固合同标准文本
- 人力外包培训合同样本
- 冷库保养合同标准文本
- 放疗皮肤反应分级护理
- 2025年03月内蒙古鄂尔多斯市东胜区事业单位引进高层次人才和紧缺专业人才50人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 卫生院全国预防接种日宣传活动总结(8篇)
- 小学消防知识教育
- 深入贯彻学习2025年中央八项规定精神教育测试题及答案
- 安徽2025年03月合肥高新技术产业开发区管理委员会公开招考60名工作人员笔试历年参考题库考点剖析附解题思路及答案详解
- 2025年第三届天扬杯建筑业财税知识竞赛题库附答案(601-700题)
- 2025年四川绵阳市投资控股(集团)有限公司招聘笔试参考题库附带答案详解
- (二调)枣庄市2025届高三模拟考试历史试卷(含答案)
- 上海市普陀区2024-2025学年高三下学期二模地理试题(含答案)
- 【初中语文】第11课《山地回忆》课件+2024-2025学年统编版语文七年级下册
评论
0/150
提交评论