广东省梅县高级中学2024届全国高三冲刺考(三)全国I卷数学试题试卷_第1页
广东省梅县高级中学2024届全国高三冲刺考(三)全国I卷数学试题试卷_第2页
广东省梅县高级中学2024届全国高三冲刺考(三)全国I卷数学试题试卷_第3页
广东省梅县高级中学2024届全国高三冲刺考(三)全国I卷数学试题试卷_第4页
广东省梅县高级中学2024届全国高三冲刺考(三)全国I卷数学试题试卷_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省梅县高级中学2024届全国高三冲刺考(三)全国I卷数学试题试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的值域为,函数,则的图象的对称中心为()A. B.C. D.2.给出以下四个命题:①依次首尾相接的四条线段必共面;②过不在同一条直线上的三点,有且只有一个平面;③空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角必相等;④垂直于同一直线的两条直线必平行.其中正确命题的个数是()A.0 B.1 C.2 D.33.如图所示,已知某几何体的三视图及其尺寸(单位:),则该几何体的表面积为()A. B.C. D.4.已知实数,则的大小关系是()A. B. C. D.5.已知是边长为的正三角形,若,则A. B.C. D.6.双曲线的渐近线方程为()A. B.C. D.7.函数f(x)=2x-3A.[32C.[328.设抛物线上一点到轴的距离为,到直线的距离为,则的最小值为()A.2 B. C. D.39.的展开式中各项系数的和为2,则该展开式中常数项为A.-40 B.-20 C.20 D.4010.若双曲线的一条渐近线与直线垂直,则该双曲线的离心率为()A.2 B. C. D.11.已知复数z满足(i为虚数单位),则z的虚部为()A. B. C.1 D.12.甲在微信群中发了一个6元“拼手气”红包,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数,则__________;__________.14.一次考试后,某班全班50个人数学成绩的平均分为正数,若把当成一个同学的分数,与原来的50个分数一起,算出这51个分数的平均值为,则_________.15.已知数列中,为其前项和,,,则_________,_________.16.已知(2x-1)7=ao+a1x+a2x2+…+a7x7,则a2=____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线的参数方程:(为参数)和圆的极坐标方程:(1)将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程;(2)已知点,直线与圆相交于、两点,求的值.18.(12分)在平面直角坐标系中,已知抛物线的焦点为,准线为,是抛物线上上一点,且点的横坐标为,.(1)求抛物线的方程;(2)过点的直线与抛物线交于、两点,过点且与直线垂直的直线与准线交于点,设的中点为,若、、四点共圆,求直线的方程.19.(12分)已知函数.(1)求函数f(x)的最小正周期;(2)求在上的最大值和最小值.20.(12分)在中,角所对的边分别是,且.(1)求角的大小;(2)若,求边长.21.(12分)设函数.(Ⅰ)当时,求不等式的解集;(Ⅱ)若函数的图象与直线所围成的四边形面积大于20,求的取值范围.22.(10分)已知为等差数列,为等比数列,的前n项和为,满足,,,.(1)求数列和的通项公式;(2)令,数列的前n项和,求.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

由值域为确定的值,得,利用对称中心列方程求解即可【详解】因为,又依题意知的值域为,所以得,,所以,令,得,则的图象的对称中心为.故选:B【点睛】本题考查三角函数的图像及性质,考查函数的对称中心,重点考查值域的求解,易错点是对称中心纵坐标错写为02、B【解析】

用空间四边形对①进行判断;根据公理2对②进行判断;根据空间角的定义对③进行判断;根据空间直线位置关系对④进行判断.【详解】①中,空间四边形的四条线段不共面,故①错误.②中,由公理2知道,过不在同一条直线上的三点,有且只有一个平面,故②正确.③中,由空间角的定义知道,空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,故③错误.④中,空间中,垂直于同一直线的两条直线可相交,可平行,可异面,故④错误.故选:B【点睛】本小题考查空间点,线,面的位置关系及其相关公理,定理及其推论的理解和认识;考查空间想象能力,推理论证能力,考查数形结合思想,化归与转化思想.3、C【解析】

由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,据此可计算出答案.【详解】由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,该几何体的表面积.故选:C【点睛】本题主要考查了三视图的知识,几何体的表面积的计算.由三视图正确恢复几何体是解题的关键.4、B【解析】

根据,利用指数函数对数函数的单调性即可得出.【详解】解:∵,∴,,.∴.故选:B.【点睛】本题考查了指数函数对数函数的单调性,考查了推理能力与计算能力,属于基础题.5、A【解析】

由可得,因为是边长为的正三角形,所以,故选A.6、A【解析】

将双曲线方程化为标准方程为,其渐近线方程为,化简整理即得渐近线方程.【详解】双曲线得,则其渐近线方程为,整理得.故选:A【点睛】本题主要考查了双曲线的标准方程,双曲线的简单性质的应用.7、A【解析】

根据幂函数的定义域与分母不为零列不等式组求解即可.【详解】因为函数y=2x-3解得x≥32且∴函数f(x)=2x-3+1【点睛】定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3)若已知函数fx的定义域为a,b,则函数fgx8、A【解析】

分析:题设的直线与抛物线是相离的,可以化成,其中是点到准线的距离,也就是到焦点的距离,这样我们从几何意义得到的最小值,从而得到的最小值.详解:由①得到,,故①无解,所以直线与抛物线是相离的.由,而为到准线的距离,故为到焦点的距离,从而的最小值为到直线的距离,故的最小值为,故选A.点睛:抛物线中与线段的长度相关的最值问题,可利用抛物线的几何性质把动线段的长度转化为到准线或焦点的距离来求解.9、D【解析】令x=1得a=1.故原式=.的通项,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40,选D解析2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x,从余下的5个括号中选2个提出x,选3个提出;若第1个括号提出,从余下的括号中选2个提出,选3个提出x.故常数项==-40+80=4010、B【解析】

由题中垂直关系,可得渐近线的方程,结合,构造齐次关系即得解【详解】双曲线的一条渐近线与直线垂直.∴双曲线的渐近线方程为.,得.则离心率.故选:B【点睛】本题考查了双曲线的渐近线和离心率,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.11、D【解析】

根据复数z满足,利用复数的除法求得,再根据复数的概念求解.【详解】因为复数z满足,所以,所以z的虚部为.故选:D.【点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.12、B【解析】

将所有可能的情况全部枚举出来,再根据古典概型的方法求解即可.【详解】设乙,丙,丁分别领到x元,y元,z元,记为,则基本事件有,,,,,,,,,,共10个,其中符合乙获得“最佳手气”的有3个,故所求概率为,故选:B.【点睛】本题主要考查了枚举法求古典概型的方法,属于基础题型.二、填空题:本题共4小题,每小题5分,共20分。13、01【解析】

根据分段函数解析式,代入即可求解.【详解】函数,所以,.故答案为:0;1.【点睛】本题考查了分段函数求值的简单应用,属于基础题.14、1【解析】

根据均值的定义计算.【详解】由题意,∴.故答案为:1.【点睛】本题考查均值的概念,属于基础题.15、8(写为也得分)【解析】

由,得,.当时,,所以,所以的奇数项是以1为首项,以2为公比的等比数列;其偶数项是以2为首项,以2为公比的等比数列.则,.16、【解析】

根据二项展开式的通项公式即可得结果.【详解】解:(2x-1)7的展开式通式为:当时,,则.故答案为:【点睛】本题考查求二项展开式指定项的系数,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1):,:;(2)【解析】

(1)消去参数求得直线的普通方程,将两边同乘以,化简求得圆的直角坐标方程.(2)求得直线的标准参数方程,代入圆的直角坐标方程,化简后写出韦达定理,根据直线参数的几何意义,求得的值.【详解】(1)消去参数,得直线的普通方程为,将两边同乘以得,,∴圆的直角坐标方程为;(2)经检验点在直线上,可转化为①,将①式代入圆的直角坐标方程为得,化简得,设是方程的两根,则,,∵,∴与同号,由的几何意义得.【点睛】本小题主要考查参数方程化为普通方程、极坐标方程化为直角坐标方程,考查利用直线参数的几何意义求解距离问题,属于中档题.18、(1)(2)【解析】

(1)由抛物线的定义可得,即可求出,从而得到抛物线方程;(2)设直线的方程为,代入,得.设,,列出韦达定理,表示出中点的坐标,若、、、四点共圆,再结合,得,则即可求出参数,从而得解;【详解】解:(1)由抛物线定义,得,解得,所以抛物线的方程为.(2)设直线的方程为,代入,得.设,,则,.由,,得,所以.因为直线的斜率为,所以直线的斜率为,则直线的方程为.由解得.若、、、四点共圆,再结合,得,则,解得,所以直线的方程为.【点睛】本题考查抛物线的定义及性质的应用,直线与抛物线综合问题,属于中档题.19、(1);(2)见解析【解析】

将函数解析式化简即可求出函数的最小正周期根据正弦函数的图象和性质即可求出函数在定义域上的最大值和最小值【详解】(Ⅰ)由题意得原式的最小正周期为.(Ⅱ),.当,即时,;当,即时,.综上,得时,取得最小值为0;当时,取得最大值为.【点睛】本题主要考查了两角和与差的余弦公式展开,辅助角公式,三角函数的性质等,较为综合,也是常考题型,需要计算正确,属于基础题20、(1);(2).【解析】

(1)把代入已知条件,得到关于的方程,得到的值,从而得到的值.(2)由(1)中得到的的值和已知条件,求出,再根据正弦定理求出边长.【详解】(1)因为,,所以,,所以,即.因为,所以,因为,所以.(2).在中,由正弦定理得,所以,解得.【点睛】本题考查三角函数公式的运用,正弦定理解三角形,属于简单题.21、(1)(2)【解析】

(Ⅰ)当时,不等式为.若,则,解得或,结合得或.若,则,不等式恒成立,结合得.综上所述,不等式解集为.(Ⅱ)则的图象与直线所围成的四边形为梯形,令,得,令,得,则梯形上底为,下底为11,高为..化简得,解得,结合,得的取值范围为.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.22、(1),;(2).【解析】

(1)设的公差为,的公比为,由基本量法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论