版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省揭阳一中、潮州金山中学2024届高三一诊模拟考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.正三棱柱中,,是的中点,则异面直线与所成的角为()A. B. C. D.2.祖暅原理:“幂势既同,则积不容异”.意思是说:两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设、为两个同高的几何体,、的体积不相等,、在等高处的截面积不恒相等.根据祖暅原理可知,是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.已知集合,则=A. B. C. D.4.不等式的解集记为,有下面四个命题:;;;.其中的真命题是()A. B. C. D.5.已知函数,其中,记函数满足条件:为事件,则事件发生的概率为A. B.C. D.6.五行学说是华夏民族创造的哲学思想,是华夏文明重要组成部分.古人认为,天下万物皆由金、木、水、火、土五类元素组成,如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素,则2类元素相生的概率为()A. B. C. D.7.若集合M={1,3},N={1,3,5},则满足M∪X=N的集合X的个数为()A.1 B.2C.3 D.48.若函数为自然对数的底数)在区间上不是单调函数,则实数的取值范围是()A. B. C. D.9.的展开式中有理项有()A.项 B.项 C.项 D.项10.已知函数的图象在点处的切线方程是,则()A.2 B.3 C.-2 D.-311.中国古典乐器一般按“八音”分类.这是我国最早按乐器的制造材料来对乐器进行分类的方法,最先见于《周礼·春官·大师》,分为“金、石、土、革、丝、木、匏(páo)、竹”八音,其中“金、石、木、革”为打击乐器,“土、匏、竹”为吹奏乐器,“丝”为弹拨乐器.现从“八音”中任取不同的“两音”,则含有打击乐器的概率为()A. B. C. D.12.已知函数的最大值为,若存在实数,使得对任意实数总有成立,则的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某班有学生52人,现将所有学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知5号、31号、44号学生在样本中,则样本中还有一个学生的编号是__________.14.已知是抛物线的焦点,是上一点,的延长线交轴于点.若为的中点,则_________.15.已知数列的前项和为,且满足,则______16.已知,为双曲线的左、右焦点,双曲线的渐近线上存在点满足,则的最大值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知公比为正数的等比数列的前项和为,且,.(1)求数列的通项公式;(2)设,求数列的前项和.18.(12分)已知数列满足,且.(1)求证:数列是等差数列,并求出数列的通项公式;(2)求数列的前项和.19.(12分)以直角坐标系的原点为极坐标系的极点,轴的正半轴为极轴.已知曲线的极坐标方程为,是上一动点,,点的轨迹为.(1)求曲线的极坐标方程,并化为直角坐标方程;(2)若点,直线的参数方程(为参数),直线与曲线的交点为,当取最小值时,求直线的普通方程.20.(12分)新高考,取消文理科,实行“”,成绩由语文、数学、外语统一高考成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人(把年龄在称为中青年,年龄在称为中老年),并把调查结果制成下表:年龄(岁)频数515101055了解4126521(1)分别估计中青年和中老年对新高考了解的概率;(2)请根据上表完成下面列联表,是否有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关?了解新高考不了解新高考总计中青年中老年总计附:.0.0500.0100.0013.8416.63510.828(3)若从年龄在的被调查者中随机选取3人进行调查,记选中的3人中了解新高考的人数为,求的分布列以及.21.(12分)已知函数,.(1)若对于任意实数,恒成立,求实数的范围;(2)当时,是否存在实数,使曲线:在点处的切线与轴垂直?若存在,求出的值;若不存在,说明理由.22.(10分)如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
取中点,连接,,根据正棱柱的结构性质,得出//,则即为异面直线与所成角,求出,即可得出结果.【详解】解:如图,取中点,连接,,由于正三棱柱,则底面,而底面,所以,由正三棱柱的性质可知,为等边三角形,所以,且,所以平面,而平面,则,则//,,∴即为异面直线与所成角,设,则,,,则,∴.故选:C.【点睛】本题考查通过几何法求异面直线的夹角,考查计算能力.2、A【解析】
由题意分别判断命题的充分性与必要性,可得答案.【详解】解:由题意,若、的体积不相等,则、在等高处的截面积不恒相等,充分性成立;反之,、在等高处的截面积不恒相等,但、的体积可能相等,例如是一个正放的正四面体,一个倒放的正四面体,必要性不成立,所以是的充分不必要条件,故选:A.【点睛】本题主要考查充分条件、必要条件的判定,意在考查学生的逻辑推理能力.3、C【解析】
本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,,则.故选C.【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.4、A【解析】
作出不等式组表示的可行域,然后对四个选项一一分析可得结果.【详解】作出可行域如图所示,当时,,即的取值范围为,所以为真命题;为真命题;为假命题.故选:A【点睛】此题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于中档题.5、D【解析】
由得,分别以为横纵坐标建立如图所示平面直角坐标系,由图可知,.6、A【解析】
列举出金、木、水、火、土任取两个的所有结果共10种,其中2类元素相生的结果有5种,再根据古典概型概率公式可得结果.【详解】金、木、水、火、土任取两类,共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10种结果,其中两类元素相生的有火木、火土、木水、水金、金土共5结果,所以2类元素相生的概率为,故选A.【点睛】本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有(1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,….,再,…..依次….…这样才能避免多写、漏写现象的发生.7、D【解析】可以是共4个,选D.8、B【解析】
求得的导函数,由此构造函数,根据题意可知在上有变号零点.由此令,利用分离常数法结合换元法,求得的取值范围.【详解】,设,要使在区间上不是单调函数,即在上有变号零点,令,则,令,则问题即在上有零点,由于在上递增,所以的取值范围是.故选:B【点睛】本小题主要考查利用导数研究函数的单调性,考查方程零点问题的求解策略,考查化归与转化的数学思想方法,属于中档题.9、B【解析】
由二项展开式定理求出通项,求出的指数为整数时的个数,即可求解.【详解】,,当,,,时,为有理项,共项.故选:B.【点睛】本题考查二项展开式项的特征,熟练掌握二项展开式的通项公式是解题的关键,属于基础题.10、B【解析】
根据求出再根据也在直线上,求出b的值,即得解.【详解】因为,所以所以,又也在直线上,所以,解得所以.故选:B【点睛】本题主要考查导数的几何意义,意在考查学生对这些知识的理解掌握水平.11、B【解析】
分别求得所有基本事件个数和满足题意的基本事件个数,根据古典概型概率公式可求得结果.【详解】从“八音”中任取不同的“两音”共有种取法;“两音”中含有打击乐器的取法共有种取法;所求概率.故选:.【点睛】本题考查古典概型概率问题的求解,关键是能够利用组合的知识求得基本事件总数和满足题意的基本事件个数.12、B【解析】
根据三角函数的两角和差公式得到,进而可以得到函数的最值,区间(m,n)长度要大于等于半个周期,最终得到结果.【详解】函数则函数的最大值为2,存在实数,使得对任意实数总有成立,则区间(m,n)长度要大于等于半个周期,即故答案为:B.【点睛】这个题目考查了三角函数的两角和差的正余弦公式的应用,以及三角函数的图像的性质的应用,题目比较综合.二、填空题:本题共4小题,每小题5分,共20分。13、18【解析】
根据系统抽样的定义和方法,所抽取的4个个体的编号成等差数列,故可根据其中三个个体的编号求出另一个个体的编号.【详解】解:根据系统抽样的定义和方法,所抽取的4个个体的编号成等差数列,已知其中三个个体的编号为5,31,44,故还有一个抽取的个体的编号为18,故答案为:18【点睛】本题主要考查系统抽样的定义和方法,属于简单题.14、【解析】
由题意可得,又由于为的中点,且点在轴上,所以可得点的横坐标,代入抛物线方程中可求点的纵坐标,从而可求出点的坐标,再利用两点间的距离公式可求得结果.【详解】解:因为是抛物线的焦点,所以,设点的坐标为,因为为的中点,而点的横坐标为0,所以,所以,解得,所以点的坐标为所以,故答案为:【点睛】此题考查抛物线的性质,中点坐标公式,属于基础题.15、【解析】
对题目所给等式进行赋值,由此求得的表达式,判断出数列是等比数列,由此求得的值.【详解】解:,可得时,,时,,又,两式相减可得,即,上式对也成立,可得数列是首项为1,公比为的等比数列,可得.【点睛】本小题主要考查已知求,考查等比数列前项和公式,属于中档题.16、【解析】
设,由可得,整理得,即点在以为圆心,为半径的圆上.又点到双曲线的渐近线的距离为,所以当双曲线的渐近线与圆相切时,取得最大值,此时,解得.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)判断公比不为1,运用等比数列的求和公式,解方程可得公比,进而得到所求通项公式;(2)求得,运用数列的错位相减法求和,以及等比数列的求和公式,计算可得所求和.【详解】解:(1)设公比为正数的等比数列的前项和为,且,,可得时,,不成立;当时,,即,解得(舍去),则;(2),前项和,,两式相减可得,化简可得.【点睛】本题考查等比数列的通项公式和求和公式的运用,考查数列的错位相减法求和,考查方程思想和运算能力,属于中档题.18、(1)证明见解析,;(2).【解析】
(1)将等式变形为,进而可证明出是等差数列,确定数列的首项和公差,可求得的表达式,进而可得出数列的通项公式;(2)利用错位相减法可求得数列的前项和.【详解】(1)因为,所以,即,所以数列是等差数列,且公差,其首项所以,解得;(2),①,②①②,得,所以.【点睛】本题考查利用递推公式证明等差数列,同时也考查了错位相减法求和,考查推理能力与计算能力,属于中等题.19、(1),;(2).【解析】
(1)设点极坐标分别为,,由可得,整理即可得到极坐标方程,进而求得直角坐标方程;(2)设点对应的参数分别为,则,,将直线的参数方程代入的直角坐标方程中,再利用韦达定理可得,,则,求得取最小值时符合的条件,进而求得直线的普通方程.【详解】(1)设点极坐标分别为,,因为,则,所以曲线的极坐标方程为,两边同乘,得,所以的直角坐标方程为,即.(2)设点对应的参数分别为,则,,将直线的参数方程(参数),代入的直角坐标方程中,整理得.由韦达定理得,,所以,当且仅当时,等号成立,则,所以当取得最小值时,直线的普通方程为.【点睛】本题考查极坐标与直角坐标方程的转化,考查利用直线的参数方程研究直线与圆的位置关系.20、(1);(2)见解析,有95%的把握判断了解新高考与年龄(中青年、中老年)有关联;(3)分布列见解析,.【解析】
(1)分别求出中青年、中老年对高考了解的频数,即可求出概率;(2)根据数据列出列联表,求出的观测值,对照表格,即可得出结论;(3)年龄在的被调查者共5人,其中了解新高考的有2人,可能取值为0,1,2,分别求出概率,列出随机变量分布列,根据期望公式即可求解.【详解】(1)由题中数据可知,中青年对新高考了解的概率,中老年对新高考了解的概率.(2)列联表如图所示了解新高考不了解新高考总计中青年22830老年81220总计302050,所以有95%的把握判断了解新高考与年龄(中青年、中老年)有关联.(3)年龄在的被调查者共5人,其中了解新高考的有2人,则抽取的3人中了解新高考的人数可能取值为0,1,2,则;;.所以的分布列为012.【点睛】本题考查概率、独立性检验及随机变量分布列和期望,考查计算求解能力,属于基础题.21、(1);(2)不存在实数,使曲线在点处的切线与轴垂直.【解析】
(1)分类时,恒成立,时,分离参数为,引入新函数,利用导数求得函数最值即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 预防触电大班安全教育
- 快速做课件教学课件
- 起重机械操作培训
- 颈椎病的运动处方
- 3.3.2盐类水解平衡常数与影响盐类水解的因素 课件高二上学期化学人教版(2019)选择性必修1
- 防意外安全演练
- 细菌性肝脓肿个案护理
- 湿疹性皮炎的护理查房
- 保育老师真辛苦教案反思
- 化简比说课稿
- Q∕GDW 12155-2021 国家电网有限公司应急指挥信息系统技术规范
- 《中国古代文学史——杜甫》优秀PPT课件
- 仁爱英语九年级下册Unit5Topic1sectionA的教学设计
- 《色彩基础知识》PPT课件(详解)
- 鲁东教师心理健康期末考试复习题及参考答案
- 【教师必备】部编版五年级语文上册第五单元【集体备课】
- 商业空间设计PPT课件
- 相容性独立性完全性
- 市政工程创优汇报
- A4横线稿纸模板(可直接打印)-a4线条纸
- 10kV电缆迁移工程施工方案
评论
0/150
提交评论