




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版九年级上册数学期中考试试题一、单选题1.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.若关于x的一元二次方程kx2+2x–1=0有实数根,则实数k的取值范围是A.k≥–1B.k>–1C.k≥–1且k≠0D.k>–1且k≠03.如图,BC是的直径,A,D是上的两点,连接AB,AD,BD,若,则的度数是(
)A.B.C.D.4.下列运算正确的是(
)A.B.C.D.5.如图,矩形的对角线交于点,若,,则的长为()A.2B.3C.D.46.为了解某市参加中考的25000名学生的身高情况,抽查了其中1200名学生的身高进行统计分析.下列叙述正确的是()A.25000名学生是总体B.1200名学生的身高是总体的一个样本C.每名学生是总体的一个个体D.以上调查是全面调查7.如图,、为⊙O的切线,切点分别为A、B,交于点C,的延长线交⊙O于点D.下列结论不一定成立的是(
)A.为等腰三角形B.与相互垂直平分C.点A、B都在以为直径的圆上D.为的边上的中线8.已知一次函数y=(a+1)x+b的图象如图所示,那么a的取值范围是()A.B.C.D.9.如图,等腰直角三角形ABC的直角顶点C与平面直角坐标系的坐标原点O重合,AC,BC分别在坐标轴上,AC=BC=1,△ABC在x轴正半轴上沿顺时针方向作无滑动的滚动,在滚动过程中,当点C第一次落在x轴正半轴上时,点A的对应点A1的横坐标是()A.2B.3C.1+D.2+10.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,对称轴是直线x=-1,点B的坐标为(1,0).下面的四个结论:①AB=4;②b2-4ac>0;③ab<0;④a-b+c<0,其中正确的结论有(
)A.1个B.2个C.3个D.4个二、填空题11.在网络上搜索“奔跑吧,兄弟”,能搜索到与之相关的结果为35800000个,将35800000用科学记数法表示为______.12.已知一组数据:18,17,13,15,17,16,14,17,则这组数据的中位数与众数分别是__________.13.若分式有意义,则a的取值范围是_____.14.某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为__________.15.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为____16.如图,在矩形ABCD中,AD=8,AB=4,将矩形ABCD折叠,使点A与点C重合,折痕为MN.给出以下四个结论:①△CDM≌△CEN;②△CMN是等边三角形;③CM=5;④BN=3.其中正确的结论序号是_____.三、解答题17.解方程:(1).(2).18.先化简,再求值:,其中.19.防疫期间,某公司购买两种不同品牌的免洗洗手液,若购买A种10件,种5件,共需130元;若购A种5件,种10件,共需140元.(1)两种洗手液每件各多少元?(2)若购买两种洗手液共100件,且总费用不超过900元,则A种洗手液至少需要购买多少件?20.某经销商销售一种产品,这种产品的成本价为10元/件,规定销售价不低于成本价,且不高于35元,市场调查发现,该产品每天的销售量(件)与销售价(元/件)满足一次函数关系,如图所示.(1)求与之间的函数关系式;(2)若经销商想要每天获得550元的利润,销售价应该定为多少?(3)设每天的销售利润为(元),当销售价为多少元时,每天获得的利润最大,最大利润是多少?21.如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点,且∠DBC=∠A=60°,连接OE并延长与⊙O相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6cm,求弦BD的长.22.与都是等边三角形,连接AD、BE.(1)如图①,当点B、C、D在同一条直线上时,则______度;(2)将图①中的绕着点C逆时针旋转到如图②的位置,求证:.23.已知抛物线经过点A(-3,-7),B(3,5),顶点为点E,抛物线的对称轴与直线AB交于点C.(1)求直线AB的解析式和抛物线的解析式.(2)在抛物线上A,E两点之间的部分(不包含A,E两点),是否存在点D,使得?若存在,求出点D的坐标;若不存在,请说明理由.(3)若点P在抛物线上,点Q在x轴上,当以点A,E,P,Q为顶点的四边形是平行四边形时,直接写出满足条件的点P的坐标.24.如图所示,二次函数y=-mx2+4m的顶点坐标为(0,2),矩形ABCD的顶点B,C在x轴上,A、D在抛物线上,矩形ABCD在抛物线与x轴所围成的图形内,且点A在点D的左侧.(1)求二次函数的解析式;(2)设点A的坐标为(x,y),试求矩形ABCD的周长p关于自变量x的函数解析式,并求出自变量x的取值范围;(3)是否存在这样的矩形ABCD,使它的周长为9?试证明你的结论.25.在等腰Rt△ABC中,AB=AC,∠BAC=90°(1)如图1,D,E是等腰Rt△ABC斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF①求证:△AED≌△AFD;②当BE=3,CE=7时,求DE的长;如图2,点D是等腰Rt△ABC斜边BC所在直线上的一动点,连接AD,以点A为直角顶点作等腰Rt△ADE,当BD=3,BC=9时,求DE的长.参考答案1.A【解析】【分析】根据中心对称图形以及轴对称图形的概念对各选项分析判断即可得解.【详解】解:A.既是轴对称图形,也是中心对称图形,故本选项符合题意;B.不是轴对称图形,是中心对称图形,故本选项不合题意;C.是轴对称图形,不是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:A.【点睛】本题考查了中心对称图形以及轴对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后和原图形重合.2.C【解析】【详解】解:∵一元二次方程kx2﹣2x﹣1=0有两个实数根,∴△=b2﹣4ac=4+4k≥0,且k≠0,解得:k≥﹣1且k≠0.故选C.【点睛】此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.3.A【解析】【分析】连接AC,如图,根据圆周角定理得到,,然后利用互余计算的度数.【详解】连接AC,如图,∵BC是的直径,∴,∵,∴.故答案为.故选A.【点睛】本题考查圆周角定理和推论,解题的关键是掌握圆周角定理和推论.4.D【解析】【分析】根据二次根式运算法则逐项计算即可.【详解】解:A.被开方数不同,不能合并,原选项错误,不符合题意;B.,原选项错误,不符合题意;C.,原选项错误,不符合题意;D.,原选项正确,符合题意;故选:D.【点睛】本题考查了二次根式的运算,解题关键是熟练掌握二次根式的运算法则,准确进行计算.5.A【解析】【分析】根据直角三角形30°角所对的直角边等于斜边的一半可得AC=2AB=4,再根据矩形的对角线互相平分解答.【详解】解:在矩形ABCD中,∠ABC=90°,∵∠ACB=30°,AB=2,∴AC=2AB=2×2=4,∵四边形ABCD是矩形,∴OC=OA=AC=2.故选:A.6.B【详解】A、总体是25000名学生的身高情况,故A错误;B、1200名学生的身高是总体的一个样本,故B正确;C、每名学生的身高是总体的一个个体,故C错误;D、该调查是抽样调查,故D错误.故选:B.7.B【分析】连接OB,OC,令M为OP中点,连接MA,MB,证明Rt△OPB≌Rt△OPA,可得BP=AP,∠OPB=∠OPA,∠BOC=∠AOC,可推出为等腰三角形,可判断A;根据△OBP与△OAP为直角三角形,OP为斜边,可得PM=OM=BM=AM,可判断C;证明△OBC≌△OAC,可得PC⊥AB,根据△BPA为等腰三角形,可判断D;无法证明与相互垂直平分,即可得出答案.【详解】解:连接OB,OC,令M为OP中点,连接MA,MB,∵B,C为切点,∴∠OBP=∠OAP=90°,∵OA=OB,OP=OP,∴Rt△OPB≌Rt△OPA,∴BP=AP,∠OPB=∠OPA,∠BOC=∠AOC,∴为等腰三角形,故A正确;∵△OBP与△OAP为直角三角形,OP为斜边,∴PM=OM=BM=AM∴点A、B都在以为直径的圆上,故C正确;∵∠BOC=∠AOC,OB=OA,OC=OC,∴△OBC≌△OAC,∴∠OCB=∠OCA=90°,∴PC⊥AB,∵△BPA为等腰三角形,∴为的边上的中线,故D正确;无法证明与相互垂直平分,故选:B.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,圆的性质,掌握知识点灵活运用是解题关键.8.C【解析】【分析】根据一次函数y=(a+1)x+b的图象所经过的象限来判断a+1的符号,从而求得a的取值范围.【详解】根据图示知:一次函数y=(a+1)x+b的图象经过第一、二、三象限,∴a+1>0,即a>-1;故选C.【点睛】本题考查了一次函数的图象.此类题可用数形结合的思想进行解答,这也是速解习题常用的方法.9.D【解析】【详解】解:如图,∵AC=BC=1,∠AOB=90°∴OA′=B2C3=1,AB=A′B2=,∠A1C3B2=∠AOB=90°,∴点A1的横坐标为2+,故选D.10.C【解析】【分析】利用二次函数对称性以及结合的符号与轴交点个数关系,再利用数形结合分别分析得出答案.【详解】∵抛物线对称轴是直线x=﹣1,点B的坐标为(1,0),∴A(﹣3,0),∴AB=4,故选项①正确;∵抛物线与x轴有两个交点,∴>0,故选项②正确;∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴左侧,∴a,b同号,∴ab>0,故选项③错误;当x=﹣1时,y=a﹣b+c此时最小,为负数,故选项④正确;综上①②④正确故选:【点睛】本题主要考查了二次函数图象与系数的关系,熟练运用二次函数的图象与性质,正确判断的符号是解题关键.11.3.58×107【解析】【分析】根据科学记数法的表示形式(a×10n的形式,其中1≤|a|<10,n为整数)进行书写即可.【详解】35800000用科学记数法表示为3.58×107.故答案是:3.58×107.【点睛】考查了科学记数法的表示方法(a×10n),解题关键是确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.12.16.5,17【解析】【分析】根据众数和中位数的定义求解即可,中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.众数:在一组数据中出现次数最多的数.【详解】将,,,,,,,从小到大排列为:,,,,,,,其中出现的次数最多,则众数为,中位数为:.故答案为:;【点睛】本题考查了求众数和中位数,理解众数和中位数的定义是解题的关键.13.a≠1【详解】根据题意得:a−1≠0,解得:a≠1.故答案是:a≠114.【解析】【分析】设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x,根据“原计划所用时间﹣实际所用时间=8”列方程即可.【详解】解:设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x棵,根据题意可得:,故答案为:.15.5【解析】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵BD=3,DC=1,∴BC=4,∴BD=3,连接BC′,由对称性可知∠C′BA=∠CBA=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°∴BC=BC′=4,根据勾股定理可得:DC′==5.故答案为5.【点睛】本题考查了轴对称﹣线路最短的问题,确定动点P何位置时,使PC+PD的值最小是解题的关键.16.①③④【解析】【分析】由矩形的性质和折叠的性质可得AB=CE=4,AM=CM,AD=BC=8,AB=CD=4,CM=CN,可证△CDM≌△CEN,由勾股定理可求CM=5,BN=3,即可判断①③④是正确的,由等边三角形的判定可判断②是错误的.【详解】解:∵四边形ABCD是矩形∴AD∥BC,AD=BC=8,AB=CD=4,∴∠AMN=∠MNC,∵折叠∴AB=CE=4,∠AMN=∠NMC,AM=CM∴∠MNC=∠CMN,∴CM=CN,且CE=CD∴Rt△CDM≌Rt△CEN(HL)∴CN=CM,∵MC2=MD2+CD2,∴MC2=(8﹣MC)2+16,∴MC=5,∴CN=5,∴BN=BC﹣CN=3故①③④正确∵MD=AD﹣AM=3,且MC=5,∴MD≠MC,即∠MCD≠30°∴∠MCN≠60°∴△CMN不是等边三角形故②错误故答案是:①③④【点睛】考查了翻折变换,矩形的性质,全等三角形的判定和性质,勾股定理,等边三角形的判定,熟练运用这些性质进行推理是本题的关键.17.(1);(2)【解析】【分析】(1)原方程运用因式分解法求解即可;(2)原方程运用公式法求解即可.【详解】解:(1),,,∴;(2),,,∴.【点睛】此题考查了解一元二次方程,熟练掌握解一元二次方程的方法是解答此题的关键.18.,【解析】【分析】先根据分式的混合运算顺序及运算法则化简代数式,再将x的值代入求值即可.【详解】解:原式,当时,原式.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.19.(1)A种洗手液每件8元,B种洗手液每件各10元;(2)50件【解析】【分析】(1)设A种洗手液每件元,种洗手液每件各元,根据题意列出二元一次方程组,解方程组即可求解;(2)设A种洗手液购买件,根据题意列出不等式,从中找到最小整数解即可.【详解】解:(1)设A种洗手液每件元,种洗手液每件各元,根据题意得解得:答:A种洗手液每件8元,B种洗手液每件各10元;(2)设A种洗手液购买件,则种洗手液购买件,根据题意可得,解得:.答:A种洗手液至少需要购买50件.【点睛】本题主要考查二元一次方程组和不等式,读懂题意列出方程组及不等式是关键.20.(1);(2)15元/件;(3)销售价为35元/件时,每天获得的利润最大,最大利润1750元【解析】【分析】(1)由图可知,一次函数的图象经过(20,100)和(30,80)两点,利用待定系数法可求得k、b的值;(2)利用“(售价-进价)×销售数量=销售利润”可以解决售价问题;(3)探究W与x之间的函数关系,利用函数解决W的最值问题即可.【详解】解:(1)设.∵图象经过(20,100)和(30,80)两点,∴,解得,.∴.(2)由题意得,.解得,.∵,∴(不合题意,舍去).∴若想要每天获得550元的利润,销售价应该定为15元/件.(3).∴W是关于x的二次函数.∵,抛物线开口向下,∴当x<40时,y随x的增大而增大.又∵,∴当时,=1750.∴当销售价为35元/件时,每天获得的利润最大,最大利润1750元.【点睛】本题考查用待定系数法求一次函数解析式、二次函数的性质和应用等知识点.熟知待定系数法的流程是基础,掌握二次函数的性质是求最值的关键.21.(1)证明见解析;(2)弦BD的长为6.【解析】【分析】(1)连接OB,由垂径定理的推论得出BE=DE,OE⊥BD,,由圆周角定理得出∠BOE=∠A,证出∠OBE+∠DBC=90°,得出∠OBC=90°即可;(2)由勾股定理求出OC,由△OBC的面积求出BE,即可得出弦BD的长.【详解】(1)证明:连接OB,如图所示:∵E是弦BD的中点,∴BE=DE,OE⊥BD,,∴∠BOE=∠A,∠OBE+∠BOE=90°,∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线;(2)解:∵OB=6,∠DBC=∠A=60°,BC⊥OB,∴OC=12,∵△OBC的面积=OC•BE=OB•BC,∴BE=,∴BD=2BE=6,即弦BD的长为6.【点睛】本题考查了切线的判定、垂径定理的推论、圆周角定理、勾股定理、三角形面积的计算;熟练掌握垂径定理的推论和圆周角定理是解决问题的关键.22.(1);(2)证明见解析.【解析】【分析】(1)根据是等边三角形及点B、C、D在同一条直线上即可求解;(2)证明即可求解.【详解】解:(1)∵是等边三角形,∴,∵点B、C、D在同一条直线上,∴,∴(2)∵与都是等边三角形,∴BC=AC,CE=CD,∠ACB=∠DCE=,∴∠ACB+∠ACE=∠DCE+∠ACE,∴∠BCE=∠ACD,在与中,,∴,∴BE=AD.【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质;解题的关键是熟练掌握全等三角形的判定方法.23.(1)y=2x-1,y=-x2+2x+8;(2)存在,D(-1,5);(3)点P的坐标为(1+,2)或(1-,2)或(6,-16)或(-4,-16)【解析】【分析】(1)设直线的解析式为,把点,代入,即可得直线AB的解析式,把点,代入抛物线,即可得抛物线的解析式;(2)把抛物线化为顶点式,设点,,过点作轴的平行线交直线于点,则,即可得,,根据解得,即可得;(3)设点,当以点,,,为顶点的四边形是平行四边形时,分三种情况讨论:①当为对角线时,根据中点坐标公式可得点坐标为,解得,当时,,解得或,即可得;②当为对角线时,根据中点坐标公式可得点坐标为,解得,当时,,方程无解,舍去;③当为对角线时,根据中点坐标公式可得点坐标为,解得,当时,,解得或;即可得.【详解】解:(1)设直线的解析式为,把点,代入,得,解得:,直线的解析式为,把点,代入抛物线,得,解得,抛物线的解析式为.(2),顶点,设点,,过点作轴的平行线交直线于点,则,,,,解得或舍去,存在点,使得(3),,设点,当以点,,,为顶点的四边形是平行四边形时,分三种情况讨论:①当为对角线时,根据中点坐标公式可得点坐标为,点在轴上,,当时,,解得或,点坐标为或,②当为对角线时,根据中点坐标公式可得点坐标为,点在轴上,,当时,,方程无解,舍去,③当为对角线时,根据中点坐标公式可得点坐标为,点在轴上,,当时,,解得或点坐标为或,综上所述,点的坐标为或或或.【点睛】本题考查了二次函数,一次函数,平行四边形,解题的关键是掌握并灵活运用这些知识点.24.(1);(2)p=-x2-4x+4,其中-2<x<2;(3)不存在,证明见解析.【解析】【分析】(1)由顶点坐标(0,2)可直接代入y=﹣mx2+4m,求得m=,即可求得抛物线的解析式;(2)由图及四边形ABCD为矩形可知AD∥x轴,长为2x的据对值,AB的长为A点的总坐标,由x与y的关系,可求得p关于自变量x的解析式,因为矩形ABCD在抛物线里面,所以x小于0,大于抛物线与x负半轴的交点;(3)由(2)得到的p关于x的解析式,可令p=9,求x的方程,看x是否有解,有解则存在,无解则不存在,显然不存在这样的p.【详解】解:(1)∵二次函数y=﹣mx2+4m的顶点坐标为(0,2),∴4m=2,即m=,∴抛物线的解析式为:y=﹣x2+2;(2)∵A点在x轴的负方向上坐标为(x,y),四边形ABCD为矩形,BC在x轴上,∴AD∥x轴,又∵抛物线关于y轴对称,∴D、C点关于y轴分别与A、B对称.∴AD的长为2x,AB长为y,∴周长p=2y+4x=2(﹣x2+2)﹣4x=﹣(x+2)2+8.∵A在抛物线上,且ABCD组成矩形,∴x<2,∵四边形ABCD为矩形,∴y>0,即x>﹣2.∴p=﹣(x+2)2+8,其中﹣2<x<2.(3)不存在,证明:假设存在这样的p,即:9=﹣(x+2)2+8,此方程无解,所以不存在这样的p.【点睛】本题考查的二次函数与几何矩形相结合的应用,比较综
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 项目管理考试内容理解试题及答案
- 项目管理资格认证考试回顾试题及答案
- 2024年项目管理专业人士资格考试预测试题及答案
- 2025年会计岗位职责试题及答案
- 洗煤厂粉尘治理施工方案
- 微生物检验技师的基本知识试题及答案
- 财务政策对公司战略的影响试题及答案
- 水泥土换填施工方案批复
- 管道工程测量与定位考核试卷
- 2024年项目管理能力评估试题及答案
- 公司电脑常见问题处理手册
- 宠物输液治疗技术-静脉输液疗法(宠物临床治疗课件)
- 猪白条购销合同范本
- 锅炉延期检验申请书
- 部编版道德与法治三年级下册第三单元《我们的公共生活》大单元作业设计案例(一)
- 机械设计手册:单行本 液压传动(第六版)
- 红色故事宣讲《小萝卜头的故事》
- 活动板房拆装合同模板范本
- GPS在森林调查中的应用-手持GPS在森林调查中的应用(森林调查技术)
- 直接打印800字作文纸
- 武汉市轨道交通一号线某期工程土建施工投标施工组织设计
评论
0/150
提交评论